PETROLEUM RESOURCE ASSESSMENT OF THE KANDIK BASIN, YUKON TERRITORY, CANADA

by P.K. Hannigan K.G. Osadetz J. Dixon T. Bird

November 2000 Whitehorse, Yukon

© November 2000 Oil and Gas Resources Branch Department of Economic Development Government of the Yukon Box 2703 Whitehorse, Yukon Y1A 2C6 phone: 867-667-3427 fax: 867-393-6262 website: www.economicdevelopment.gov.yk.ca

ISBN 1-55018-856-9

This publication was first produced in March 1999. This November 2000 version contains corrections made to that original report.

FOREWORD

A study of the petroleum resources of the Yukon portion of the Kandik Basin was undertaken by the Geological Survey of Canada (Calgary) in response to a request from the Government of Yukon. Assessment of petroleum resource potential is important for forming regulatory policies for these resources and for providing a basis for planning and issuing exploration rights.

EXECUTIVE SUMMARY

This study was undertaken by the Geological Survey of Canada with assistance from Greg Cave and Tim Bird on behalf of the Yukon Government as part of its ongoing oil and gas resources management program. The objective of the study was to investigate the petroleum resource potential of the Kandik Basin in the Yukon. A quantitative analysis was designed to give a numerical estimate of resources that could exist in the study area. In the absence of defined pools with established reserves, probability distribution of reservoir parameters and marginal play risk factors are used to generate a range of hydrocarbon potential estimates indicating uncertainties involved in analysis of frontier conceptual exploration plays.

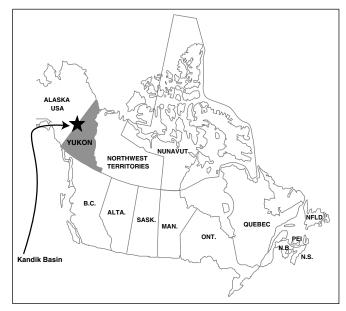
The Kandik Basin is a structural depression containing Paleozoic-Mesozoic sediments that straddles the Yukon-Alaska border. The basin constitutes a fragment of cratonic North America that underwent compression forming a fold and thrust belt with southeastern vergence. The foreland rocks are unconformably overlain by an Upper Cretaceous/Tertiary nonmarine sequence. The quantitative hydrocarbon assessments were derived using the Geological Survey of Canada's (PETRIMES) assessment methodology system. The assessments included analyses of 5 conceptual plays, each of which incorporated the calculation or estimation of field size parametric data, numbers of prospects and exploration risks. Median estimates for total oil and gas potentials for all Kandik plays are 54 million m³ of in-place oil and 38 billion m³ of in-place gas. There are no discovered reserves in the Kandik Basin, but 3 gas fields larger than 3000 million m³ (100 BCF) of gas are predicted. No oil pools greater than 160 million m³ (1 billion barrels) are predicted in the oil plays. Significant gas potential is predicted for the Mesozoic and Paleozoic marine structural plays even though risk factors are substantial in the plays. Estimates for oil potential are less optimistic.

Resource estimates are quoted initially for the entire area. After numerical analysis, the total resource for the Yukon area is estimated proportionately by area and sedimentary volume, and separate cases are proposed based on location of the largest predicted field. The portion of the resource estimated to exist in the Yukon is 25.5 million m³ oil and 24,145 million m³ gas in the case where the largest pool exists on the Yukon side of the border. The portion of the resource estimated to exist in the Yukon is 11.3 million m³ oil and 15,340 million m³ gas in the case where the largest pool is located on the Alaska side of the border.^e

Introduction	1
Acknowledgments	1
Terminology	1
Method and content	2
Methodology	3
Geological play definition	3
Compilation of play data	3
Conceptual play analysis	3
Exploration history	4
Regional geology	7
Petroleum geology	9
Reservoirs	9
Seals	10
Traps	
Source rocks	
Timing of hydrocarbon generation	11
Hydrocarbon shows	12
Petroleum assessment	13
Kandik Tertiary/Upper Cretaceous nonmarine oil and gas play	14
Kandik Mesozoic marine structural oil and gas play	
Kandik Paleozoic marine structural oil and gas play	20
Discussion of assessment results	24
Conclusions	27
References	28
Appendix 1	
Rock-Eval/TOC data for three wells in the Kandik Basin,	
western Yukon Territory	30
Appendix 2	
Input data for Kandik hydrocarbon assessments	39
Appendix 3	
Output data for Kandik hydrocarbon assessments	44
Appendix 4	
Seismic Line C-3 Inexco Oil Company 1973	
Interpretation National Energy Board 1999	73

PETROLEUM RESOURCE ASSESSMENT OF THE KANDIK BASIN, YUKON TERRITORY, CANADA

Figure 1. Kandik Basin location


INTRODUCTION

This study was undertaken by the Geological Survey of Canada with assistance from Greg Cave and Tim Bird on behalf of the Yukon Territorial Government as part of its

ongoing oil and gas resources management program. The objective of the study was to

investigate the petroleum resource potential of the Kandik Basin in the Yukon (Figure 1). A quantitative analysis was designed to give a numerical estimate of resources that could exist in the study area. In the absence of defined pools with established reserves, probability distribution of reservoir parameters and marginal play risk factors are used to generate a range of hydrocarbon potential estimates indicating uncertainties involved in analysis of frontier conceptual exploration plays.

Regional petroleum resource assessments have been prepared periodically for various sedimentary basins in Canada by the Geological Survey of Canada. These studies incorporate systematic basin analysis with subsequent statistical resource evaluations (Podruski, *et al.*, 1988; Wade, *et al.*, 1989; Sinclair, *et al.*, 1992; Reinson, *et al.*, 1993; Bird, *et al.*, 1994; Dixon, *et al.*, 1994). This report summarizes the assessment of oil and gas potential of Kandik Basin in northwest Yukon and east-central Alaska.

map.

This report provides an overview of the petroleum geology

of Kandik sedimentary basin and presents quantitative estimates of the oil and gas resources contained therein. This geological and resource framework will assist government agencies in evaluating land-use issues, and petroleum industry companies in pursuing future exploration opportunities.

ACKNOWLEDGMENTS

The authors would like to specially acknowledge the efforts of the United States Geological Survey as part of their petroleum resource assessment.

TERMINOLOGY

The terminology and procedures used in this report follow those outlined in Reinson, *et al.* (1993) and are summarized below.

Oil is defined as any naturally occurring liquid that, at the conditions under which it is measured or estimated, is primarily composed of hydrocarbon molecules and is readily producible from a borehole.

Natural gas is defined as any gas (at standard pressure and temperature, 101.33 kPa and 15°C) of natural origin comprised mostly of hydrocarbon molecules producible from a borehole (Potential Gas Committee, 1990). Natural gas may contain significant amounts of non-hydrocarbon gas such as H_2S , CO_2 or He. In this study, non-hydrocarbon gas was not considered due to lack of information on gas compositions in these basins.

Raw gas is unprocessed natural gas, containing methane, inert and acid gases, impurities and other hydrocarbons, some of which can be recovered as liquids. *Sales gas* or *marketable gas* is natural gas that meets specifications for end use. This usually requires processing that removes acid gases, impurities and hydrocarbon liquids. *Non-associated gas* is natural gas that is not in contact with oil in a reservoir. *Associated gas* is natural gas that occurs in oil reservoirs as free gas. *Solution gas* is natural gas that is dissolved in crude oil in reservoirs. In this report, insufficient information is available in order to differentiate non-associated, associated, and solution gas. All gas figures reported represent initial raw gas volumes.

Resource indicates all hydrocarbon accumulations known or inferred to exist. *Resource, resource endowment* and *endowment* are synonymous and can be used interchangeably. *Reserves* are that portion of the resource that has been discovered, while *potential* represent the portion of the resource that is not discovered but is inferred to exist. The terms *potential* and *undiscovered resources* are synonymous and may be used interchangeably.

Gas-in-place indicates the gas volume found in the ground, regardless of what portion is recoverable. *Initial in-place volume* is the gross volume of raw gas, before production. *Recoverable in-place volume* represents the volume expected to be recovered with current technology and costs. These definitions can be applied to oil volumes as well.

A *prospect* is defined as an untested exploration target within a single stratigraphic interval; it may or may not contain hydrocarbons. A prospect is not synonymous with an undiscovered pool. An undiscovered pool is a prospect that contains hydrocarbons but has not been tested as yet. A *pool* is defined as a discovered accumulation of oil or gas, typically within a single stratigraphic interval, that is separate, hydrodynamically or otherwise, from another hydrocarbon accumulation. A *field* consists of one or more oil and/or gas pools within a single structure or trap. Similar to most frontier regions, the assessment of Kandik petroleum resources is based on estimates of field rather than pool sizes. A *play* is defined as a family of pools and/or prospects that share a common history of hydrocarbon generation, migration, reservoir development and trap configuration.

Plays are grouped into two categories; *established* and *conceptual* plays. *Established plays* are demonstrated to exist due to the discovery of pools with established reserves. *Conceptual plays* are those that have no discoveries or reserves, but which geological analyses indicate may exist. Established plays are categorized further into *mature* and *immature* plays depending on the adequacy of play data for statistical analysis. Mature plays are those plays that have sufficient numbers of discoveries within the discovery sequence so that the *discovery process model* of the PETRIMES assessment procedure is of practical use (Lee and Tzeng, 1989; Lee and Wang, 1990; Lee, 1993). Immature plays do not have a sufficient number of discoveries with established reserves to properly apply the model. Conceptual play analysis was applied exclusively in this study due to the lack of any discovered pools with established reserves.

METHOD AND CONTENT

This report incorporates two essential components: geological basin analysis and statistical assessment. Basin analysis fundamentally describes and characterizes the exploration play. Fields and prospects in a play form a natural geological population that can be delimited areally. Once a play is defined, a numerical and statistical resource assessment is undertaken using field or prospect data from that specific play.

METHODOLOGY

The analysis of the Kandik area began with the compilation and synthesis of information on regional geology and hydrocarbon occurrence. This included a survey of National Energy Board (NEB) files and a search of pertinent publications. The NEB files contain information submitted as part of exploration agreements and often contain seismic lines and maps, sometimes with geological interpretation supplied by the operator.

The aim of this data compilation and literature survey was to analyze the basin in order to provide background for the definition of models for possible hydrocarbon occurrence. Models for hydrocarbon entrapment (play types) in the study area were developed by examining hydrocarbon systems, and where possible, using analogous discovered reservoirs to extrapolate play parameters.

Play definition and estimation of reservoir parameters formed the input for a systematic statistical analysis which allowed a quantitative analysis of undiscovered resources.

GEOLOGICAL PLAY DEFINITION

Definition of play type and play area is essential in the geological basin analysis that precedes any numerical resource evaluation procedure. A properly defined play will possess a single population of pools and/or prospects that satisfies the assumption that geological parameters within a play can be approximated by a family of lognormal distributions. A mixed population derived from an improperly defined play adds uncertainty to the resource estimate. Pools and/or prospects in a specific play form a natural geological population which is characterized by one or more of the following: age, depositional model, structural style, trapping mechanism, geometry, and diagenesis. Prospects or areas within a basin or region can be assigned to specific plays on the basis of a commonality of some or all of these geological elements.

COMPILATION OF PLAY DATA

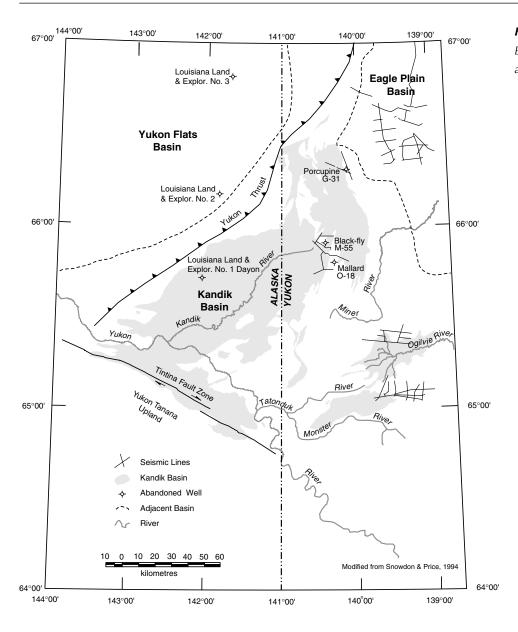
Since conceptual plays have no defined pools or discoveries, probability distributions of reservoir parameters such as prospect area, reservoir thickness, porosity, trap fill, and hydrocarbon fraction are needed. Prospect size can then be calculated using the standard "pool"- size equation. Seismic, well, and outcrop data prove particularly useful in identifying the limits for sizes of prospect area and reservoir thickness as well as porosity limits. Geochemical data are useful in identifying prospective areas as well as the composition of the hydrocarbon accumulations, i.e. oil-vs.-gas proneness. Research in similar hydrocarbon-bearing basins is also important in order to provide reasonable constraints on reservoir parameters as well as contributing further information on other aspects of petroleum geology that may prove useful for the study.

CONCEPTUAL PLAY ANALYSIS

There are several methods for estimating the quantity of hydrocarbons that may exist in a play, region or basin (White and Gehman, 1979; Masters, 1984; Rice, 1986; Lee, 1993). Petroleum assessments undertaken by the Geological Survey of Canada are currently based on probabilistic methods (Lee and Wang, 1990) that are developed in the Petroleum Exploration and Resource Evaluation System, PETRIMES (Lee and Tzeng, 1989). The conceptual hydrocarbon plays defined in the Kandik region were analysed by applying a subjective probability approach to the reservoir parameters. The lognormal option in PETRIMES was utilized since experience indicates that geological populations of pool parameters can be adequately represented by lognormal distributions.

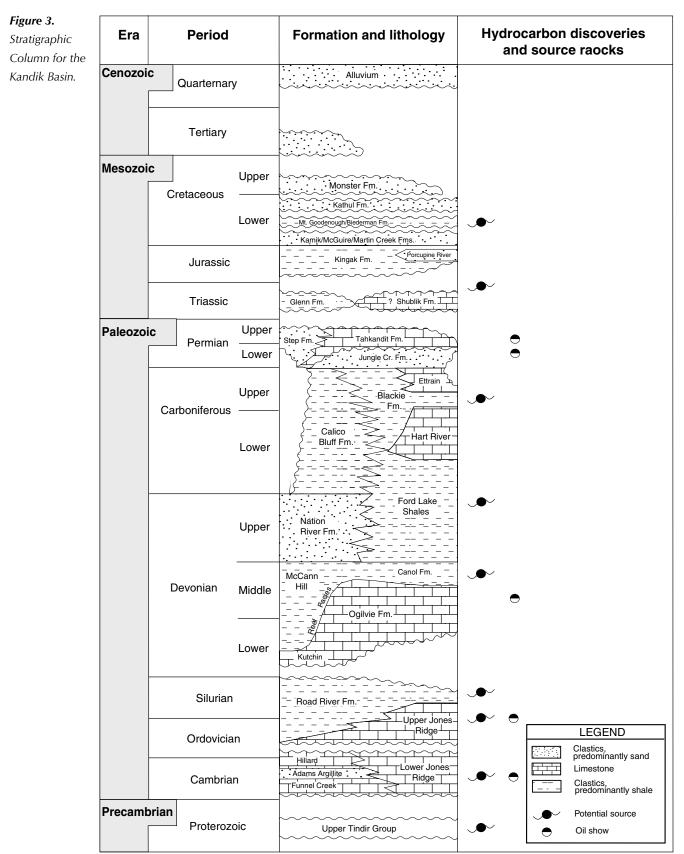
Conceptual resource assessments in the frontier regions use field-size estimates rather than pool-size predictions as derived from mature and immature play analysis. A field consists of one or more oil/gas pools or prospects in a single structure or trap. Probability distributions of oil and gas field sizes are computed by combining probability distributions of reservoir parameters, including prospect area, reservoir thickness, porosity, trap fill, hydrocarbon fraction, oil shrinkage, and gas expansion.

Probability distributions of oil and gas field sizes were combined with estimates of numbers of prospects (from seismic and play area mapping) and exploration risks to calculate play potential and to estimate sizes of undiscovered fields.


Exploration risks at a play or prospect level are determined on the basis of the presence or adequacy of geological factors necessary for the formation of petroleum accumulations. Essential factors are reservoir, seal, source rock, timing of hydrocarbon generation, trap closure and preservation. Appropriate marginal probabilities are assigned to each geological parameter to obtain risk factors. The Kandik plays have high probabilities of existing (low risk). Within each play, certain prospect-level risks are high and these are assigned appropriate risk factors. Exploration risk is an estimate, incorporating all risk factors, of the percentage of prospects within a play that are expected to contain hydrocarbon accumulations.

Due to the nature of conceptual assessment results, and since no discovered pool sizes can be used to constrain sizes of undiscovered accumulations, the uncertainty of oil and gas play potential and pool size estimates for a given range of probabilities is necessarily greater than the limits derived by discovery process analysis used in assessing mature plays.

EXPLORATION HISTORY

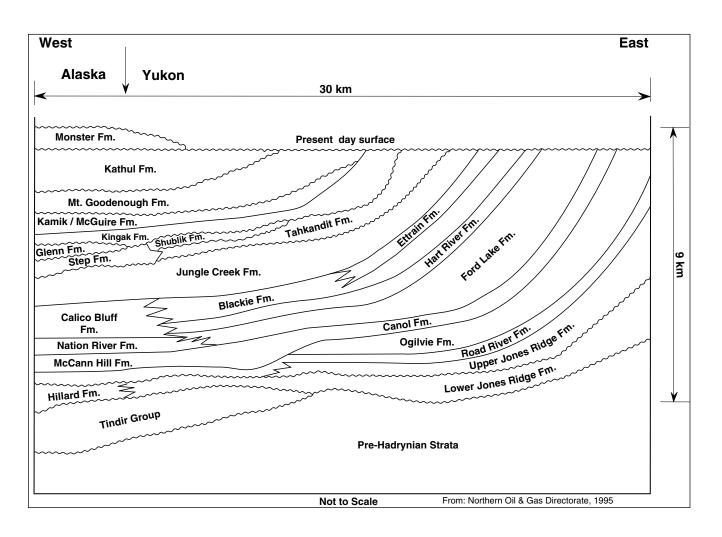

Petroleum exploration in Kandik Basin began in 1970 with the drilling of the INC Husky Amoco Black-fly YT M-55 well near the eastern margin of the basin (Inexco Oil Company, 1970) (Figure 2). The well location was centred on Black-fly Dome exposing Permian Jungle Creek sandstone. Presumably, the well was located according to geological surface mapping. In the winter of 1971, Inexco conducted a reflection and refraction seismic survey in the area (Inexco Oil Company, 1971). Approximately 180 line-kilometres of seismic data were acquired for three areas along the eastern margin of the basin (Figure 2). Inexco Husky *et al.* Porcupine YT G-31 was spudded in December, 1971 in Hart Lake carbonates in a thrusted domal structure on the northeast margin of the basin (Inexco Oil Company, 1972a). The most recent well drilled in Canada occurred in 1972 (Inexco *et al.* Mallard YT O-18) on a thrust-faulted anticline with Hart River carbonates exposed at surface (Inexco Oil Company, 1972b). None of these wells encountered hydrocarbons.

In Alaska, one well was drilled in 1976 in Kandik Basin (Louisiana Land and Exploration Doyon No. 1). It penetrates Lower Cretaceous sediments that have been repeated as thin thrust plates downhole (Johnsson et al., 1993). In 1977, two additional wells were drilled to the north in the Yukon Flats region (Louisiana Land and Exploration Numbers 2 and 3) (Figure 2). This region is not considered to be part of the Kandik Basin assessment area.

Figure 2. Location of Kandik Basin, wells and seismic lines, and adjacent basins.

REGIONAL GEOLOGY

Modified from Northern Oil & Gas Directorate, 1995


REGIONAL GEOLOGY

The Kandik Basin is a structural depression containing Paleozoic-Mesozoic sediments that straddles the Yukon-Alaska border 907 kilometres southeast of Prudhoe Bay, Alaska and 650 kilometres north-northwest of Whitehorse. The basin is elongated to the southwest so the largest portion of the basin is located in Alaska (60%). The basin is delimited by the Mesozoic sediment cover (Northern Oil and Gas Directorate, 1995) and is surrounded by outcrops of Paleozoic and Precambrian sediments (Brabb and Churkin, 1969; Norris, 1984; Dover, 1992) (Figure 2). Kandik Basin is a fragment of cratonic North America that underwent compression forming a fold and thrust belt with southeastern vergence (Norris, 1984; Dover, 1992). Paleozoic to Triassic strata southeast of Glenn Creek fault is interpreted to represent a subsiding margin sequence (Brabb and Churkin, 1969; Howell, 1996). West of the fault, poorly exposed Paleozoic rocks were thrust upon a continuous sequence of Middle Jurassic to Lower Cretaceous clastic rocks interpreted as a foreland basin fill (Johnsson et al., 1993; Howell, 1996). The foreland rocks are unconformably overlain by an Upper Cretaceous/Tertiary nonmarine sequence (unnamed in Alaska, Monster Formation in the Yukon) (Brabb and Churkin, 1969; Norris, 1985, 1997; Ricketts, 1988; Dover, 1992; Johnsson et al., 1993; Howell, 1996). The basin is interpreted to have formed as a structurally controlled depositional site in Albian time and was a precursor of the early Late Cretaceous Columbian orogeny (Norris, 1997). Subsequent Laramide-related compressional tectonic episodes produced the structures required for trapping of generated hydrocarbons. To the south, the Kandik rocks are bounded by the translational Tintina Fault separating crystalline igneous and metamorphic strata from basin-related sediments.

There are over 11 kilometres of Paleozoic to Recent strata contained in Kandik Basin surrounded by Precambrian to Permian outcrop belts on the basin margins (Northern Oil and Gas Directorate, 1995) (Figures 3 and 4). The Upper Proterozoic Tindir Group consists of several hundred metres of marlstones, diamictites, quartzites and siliceous carbonates (Dover, 1992; Northern Oil and Gas Directorate, 1995). Unconformably overlying these strata are numerous Paleozoic carbonate/shale cycles (Figure 4). Dolomitic limestones of the Cambrian to mid-Ordovician Jones Ridge Formation and Ordovician-Silurian Road River shales constitute the first cycle. The second cycle consists of Devonian platform carbonates of the Ogilvie Formation and cherts and argillites of the McCann Hill Formation in Alaska and Canol Shale in the Yukon. Clastic sedimentation dominated in Late Devonian time on the Paleozoic shelf with a "coarse" sandstone-rich facies represented by the Nation River Formation in the west and Ford Lake shales to the east. Carbonate/shale cyclical sedimentation resumed in Mississippian time with deposition of interbedded shale and limestone of the Calico Bluff Formation in Alaska and carbonates of the Hart River Formation in the eastern portion of the basin. Conformably overlying the Calico Bluff/Hart River package is another cycle represented by Lower to Upper Carboniferous Blackie clastics and Ettrain carbonates. The Blackie/Ettrain cycle is overlain by Permian Jungle Creek sandstones and Upper Permian carbonates of the Takhandit Formation. The Takhandit Formation grades westward into limey clastics and conglomerates of the Step Formation. A major unconformity separates Takhandit strata from its overlying Triassic Shublik limestone in the Yukon which correlates with the Glenn Formation 'oil shales' in Alaska. A thick succession of shales constituting the Kingak Formation of Jurassic age overlies the Shublik/Glenn package. Recurrent Cretaceous clastic wedges overlie Kingak shales.

These clastic wedges are separated by unconformities. The wedges include sandstones and siltstones of the Martin Creek/Keenan, McGuire, Kamik/Keenan, Mount Goodenough/Biederman, and Kathul formations. Unconformably overlying these Lower Cretaceous marine clastic wedges is an Upper Cretaceous nonmarine conglomeratic sandstone and grit known as the Monster Formation in the Yukon (unnamed in Alaska). This area was unglaciated during Pleistocene time. Quaternary to Recent alluvial sediments occur along river valleys in the area.

Figure 4. Schematic stratigraphic cross-section, Kandik Basin.

PETROLEUM GEOLOGY

RESERVOIRS

Upper Proterozoic

The Upper Proterozoic Tindir Group contains interbeds of red and green shales, deepwater diamictites, sandstones, and carbonates. The several hundred metre thick unit may have sufficient fracture porosity in order to preserve hydrocarbons.

Cambro-Ordovician

The Cambro-Ordovician Jones Ridge Formation consists of a light-coloured thickbedded to massive lower carbonate member overlain by a bioclastic limestone (Fritz, 1997). Approximate thickness is 915 metres. In Alaska, the Jones Ridge Formation is equivalent to strata that has been divided into three formations; the unfossiliferous Funnel Creek Formation consisting of light-coloured limestone similar to Jones Ridge carbonates, overlain by the Adams argillite, in turn overlain by Hillard Limestone comprised of breccia and limestone. Thicknesses for the Alaskan succession vary from 135 to 745 metres (Fritz, 1997). The limestones often show good porosity in outcrop. The limestones are commonly oolitic to pisolitic. Vuggy, intercrystalline and fracture porosity have been observed in drill cuttings. These units are variably dolomitic. A core cut in the formation gave very low porosity and permeability (Inexco Oil Company, 1972a).

Devonian

In the Devonian System, the Ogilvie Formation has been identified as a reservoir. This carbonate shelf deposit has a reefal facies to the west in Alaska. Coral-stromatoporoid buildups of bioclastic limestone have good porosity in outcrop along the Porcupine River in Alaska. Thicknesses vary from 60 to 1100 metres throughout the region. Fracture and vuggy porosity was reported in well cuttings in the Porcupine G-31 well. A core cut in the interval revealed very low porosity and permeability (Inexco Oil Company, 1972a).

Carboniferous

The oldest Carboniferous carbonate succession, known as the Hart River Formation progrades, over Ford Lake shales in the Kandik region and was deposited in shelf, slope and basin environments. Thinly laminated spicule packstone, with interbeds of sandstone and shale of the thin Hart River succession, exhibits secondary fracture porosity in parts. The Upper Carboniferous Ettrain carbonate sequence is mainly cherty ooid lime grainstones and skeletal packstone (Richards *et al.*, 1997). It was deposited on a shelf margin and upper slope environment in the Kandik region. Vuggy and intercrystralline porosity has been observed in the bioclastic dolomitic Ettrain carbonates in the Black-fly M-55 well. The Carboniferous succession varies in thickness from 450 to 1270 metres in Canada.

Permian

The lower Permian Jungle Creek Formation, consisting of terrigenous clastics and subordinate sandy to silty limestone, varies in thickness from 425 to 703 metres. This succession was deposited in a shoreline to offshore setting (Richards *et al.*, 1997). Fracture porosity and minor intercrystalline porosity were observed in well cuttings

(Black-fly M-55) in dolomitic and cherty shale, sandstone and limestone. During Late Permian time, massive, cliff-forming coarse-grained bioclastic limestones of the Takhandit Formation were deposited. The formation is dominated by offshore shelf and slope facies although basal shoreline deposits occur to the west (Richards *et al.*, 1997). The Takhandit strata grades westward into shallow marine cherty conglomerates and quartzites of the Step Formation. Potential for reservoir development exists in these late Permian deposits. Thicknesses vary from 30 to 725 metres in the Kandik region.

Cretaceous

Massive, ridge-forming fine-grained sandstones of the late Cretaceous Martin Creek Formation/Keenan quartzite may have reservoir potential due to its interpreted shoreface/nearshore depositional environment in eastern Kandik Basin (Dixon, 1997). No porosity, however, was observed in outcrop. Estimated thicknesses vary from 150 to 300 metres (Dover, 1992). The thick monotonous conglomerate and sandstone succession known as the Albian Kathul Formation or Graywacke may have reservoir potential in parts. This marine succession, interpreted as occurring as submarine fans in the Kandik region (Dixon, 1997), has thicknesses ranging from 450 to 1000 metres.

The upper Cretaceous Monster Formation (unnamed Upper Cretaceous/Tertiary in Alaska) is a poorly sorted nonmarine succession that infills piggy-back basins in the fold and thrust belt. It is a heterogeneous mixture of conglomerate, sandstone, mudstone and thin coals that have highly variable thicknesses along strike with lateral pinchouts. The probable aggregate thickness is 1980 metres (Howell, 1996). The strata is reported to be porous in Alaska (Howell, 1996). Depositional environments for this succession range from coastal fan to braided fluvial systems (Ricketts, 1988; Dover, 1992; Dixon, 1997).

SEALS

Regional top seal is provided by shales of the Mount Goodenough, McGuire, Kingak and Ford Lake formations for both Cretaceous and Paleozoic reservoirs. Lateral seals are attained at carbonate/shale facies transitions in Ogilvie/McCann and Ettrain/Blackie sequences. Another possible facies transition lateral seal could occur at the sandstone/ shale zone represented by the Nation River and Ford Lake formations, respectively. Canol and Road River shales could act as top seals for Middle Devonian reservoirs. Deep-seated erosion along crests of anticlines may affect the integrity of traps by removing seals. Numerous interbedded shales and siltstones within the Late Cretaceous Monster Formation may provide adequate lateral and top seals for stratigraphic and structural trapping configurations for the formation.

TRAPS

A variety of structural and stratigraphic hydrocarbon traps occur in Lower Cretaceous to Upper Devonian and Upper Proterozoic strata. Numerous and varied stratigraphic and small structural trap configurations are anticipated in Late Cretaceous strata. Traps involving Upper Proterozoic to Lower Cretaceous reservoirs include anticlinal culminations, drag folds on thrust faults, combined structural/unconformity, overthrust traps and duplex structures. Late Cretaceous traps include simple compressional anticlines, normal and reverse fault traps, faulted anticlines, and lateral stratigraphic pinchouts.

Based on outcrop mapping information (Brabb and Churkin, 1969; Norris, 1985; Dover, 1992), and related extrapolations into areas of limited outcrop, the number of structural

and stratigraphic traps within the region could number into the hundreds. The largest area of closure recognized in pre-Mid-Cretaceous strata is 75 km², while the largest structure affecting Late Cretaceous reservoirs has an area of closure of 21 km².

SOURCE ROCKS

An excellent hydrocarbon source rock has been identified in the organic-rich "oilshales" of the Triassic lower Glenn Formation. The Glenn shale locally contains up to 10% total organic carbon (TOC) (Howell, 1996). This formation is equivalent to the petroliferous Shublik shale on Alaska's north slope. The Glenn Formation and equivalents are interpreted to have been deposited over a broad shelf region that covered a large portion of northern Alaska. The prospective hydrocarbon region in Kandik Basin is not limited by source rock distribution. Numerous other mid-Devonian to Lower Cretaceous source rocks have been identified; the kerogen-rich shales of the Canol, upper Road River and Mount Goodenough formations, and organic-rich carbonates of the Tindir Group, Jones Ridge Formation and cherty shale of the McCann Hill Formation.

A Rock-eval analysis was performed on the three Canadian wells penetrating the Paleozoic succession on the eastern margins of the basin (Snowdon and Price, 1994, Appendix I). The low TOC contents in the Paleozoic sections, with the exception of selected Ford Lake intervals, reflect the high maturity as well as the original organic content of the rocks. This is consistent with the Doyon No. 1 well in Alaska where thermal maturity data indicates overmature strata (Johnsson, et al., 1993). This thermal maturity data likely indicate that reservoirs are likely to contain gas rather than oil. Type III kerogens predominate in these rocks which indicates gas-prone source material (Snowdon and Price, 1994, Appendix I). However, a restricted area of Kandik Basin, at distances of 45 to 70 kilometres away from the wells, may have oil potential due to the presence of bitumen and oil staining in Paleozoic porous strata (Hite, 1997). Residual oil and gas potential is expected in the Mesozoic and Tertiary sections over part of the Kandik Basin in Yukon and Alaska. The thermogenic source for both oil and gas upper Cretaceous/Tertiary rocks is likely the Glenn Formation and biogenic gas could be derived from interlayered lignitic coal seams.

TIMING OF HYDROCARBON GENERATION

Trap development in Paleozoic and Mesozoic rocks most likely occurred during the Laramide orogeny, which encompasses the main and latest stage of compressional folding and thrusting. These traps developed subsequent to the primary hydrocarbon charge and migration episode. This poses a potential risk for the preservation of hydrocarbons in pre-mid-Cretaceous strata in Kandik Basin. However, trap formation is inferred to postdate hydrocarbon generation in other hydrocarbon-bearing settings such as the foothills of the Canadian Cordillera. Although this timing problem may not significantly detract from the potential in Kandik Basin, it does increase the prospect risk. Secondary hydrocarbon generation can be achieved by overthrusting, inducing continued burial of source material in subthrust positions.

Folded structures in Late Cretaceous/Tertiary rocks developed subsequent to the primary hydrocarbon generation episode. However, Late Cretaceous to Eocene normal block faulting as well as Laramide compressional structures may trap secondarily derived hydrocarbons.

HYDROCARBON SHOWS

Oil staining has been observed in outcrop in local porous zones of the Takhandit limestones, Jungle Creek calcareous sandstones, Ogilvie carbonates and Jones Ridge carbonates in the Alaska portion of the basin (Northern Oil and Gas Directorate, 1995). Reported oil shows in the Doyon well in Alaska (Northern Oil and Gas Directorate, 1995) is not confirmed by the USGS which indicates no oil or gas shows in the well (Howell, 1996).

PETROLEUM ASSESSMENT

The Kandik petroleum assessment was undertaken in order to provide quantitative estimates of total oil and gas potential and possible sizes of undiscovered fields in the region. Petroleum assessments of basins or regions are usually based on analyses of a number of exploration plays. The Kandik assessment was divided into three exploration plays based on petroleum geological considerations such as structural style, dominant reservoir lithology and thermal maturity. Six conceptual oil and gas plays were identified in Kandik Basin, of which all plays have an oil and gas component.

A statistical summary of the oil and gas potential of the Kandik Basin in given in Table 1.

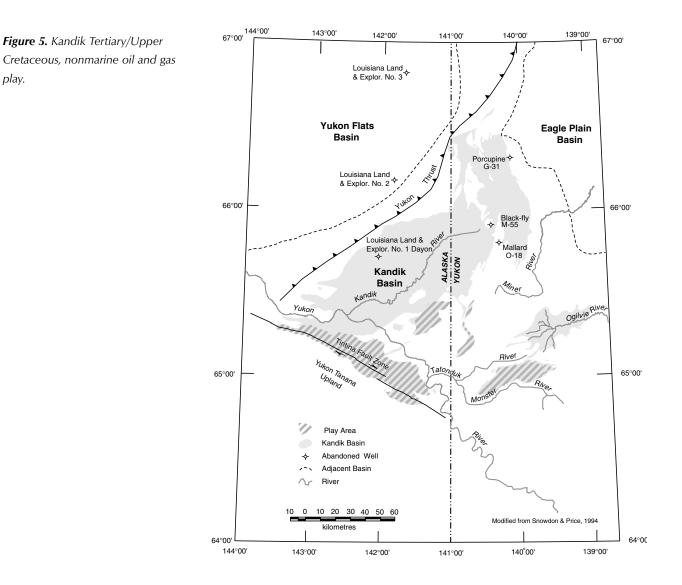

Play name	Expected no. of fields (mean)	Median play potential (in-place) (million m³)	Mean play potential (in-place) (million m³)	Median of largest field size (in-place) (million m ³)
OIL PLAYS				
Tertiary/Upper Cretaceous nonmarine	30	26	35	3.6
Mesozoic marine structural	located	in Alaska only, no	ot assessed	
Paleozoic marine structural	3	16.5	23	11
<u>GAS PLAYS</u> Tertiary/Upper Cretaceous nonmarine	30	5,863	8,012	856
Mesozoic marine structural	8	10,346	11,899	3,110
Paleozoic marine structural	10	16,913	19,647	4,839
Total Kandik Basin*	54 (oil)) and 37,792 (g	as)	
* The totals are statistically de page 70 and 72. The totals				on table on

Table 1. Oil and gas potential inKandik Basin.

Kandik Tertiary/Upper Cretaceous NONMARINE OIL AND GAS PLAY

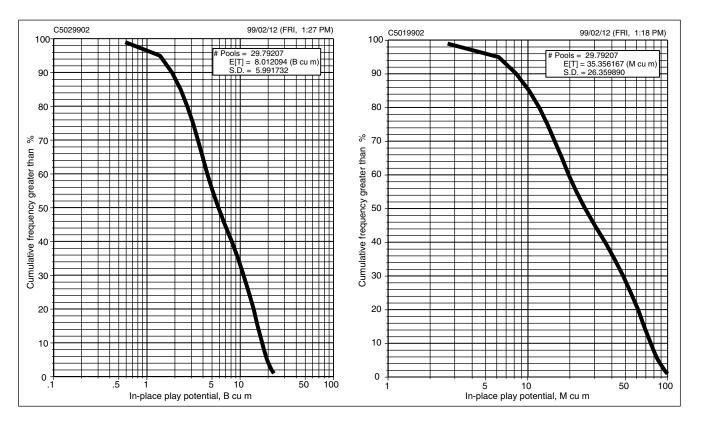
Play definition

This play encompasses all oil and gas prospects involved in small anticlinal structures and fault traps as well as stratigraphic traps within the Tertiary/Upper Cretaceous succession in Kandik Basin (Monster Formation in the Yukon). In the Yukon, the Monster Formation is located in two principal areas near the western margin of the Taiga-Nahoni Fold Belt (Ricketts, 1988). The eastern exposure is a east-trending synclinorium known as the Monster Synclinorium, located adjacent to the Monster River (Figure 5). The western exposure is a recumbent syncline in the footwall of the Yukon Thrust (Ricketts, 1988 and Figure 5). In Alaska, the unnamed succession is found in the southwestern portion of the basin adjacent to the Tintina fault zone and south of the Yukon River (Figure 5). Another depositional remnant is found to the northeast adjacent to the Alaska/Yukon boundary. Thermal maturity characteristics indicate oil and gas possibilities in the play. About 35% of the play area is located in the Yukon.

play.

Geology

Potential hydrocarbon traps involve Tertiary/Upper Cretaceous fluvial strata onlapping crests of anticlines and filling piggy-back basins in the fold and thrust belt. The reservoirs consist of a heterogeneous mixture of conglomerate, sandstone and mudstone with thin horizons of coal. The thicknesses of reservoir-quality clastics are highly variable with lateral pinchouts. The reservoirs are characterized by numerous stratigraphic traps and small structural configurations, such as simple compressional anticlines, normal and reverse fault traps, and faulted anticlines. The dominant source rock in the area is the Triassic Glenn shale which commonly has TOC contents of 10%. The nonmarine strata itself is immature, while underlying rocks are thermally mature. The prolific petroleum source rocks are in the oil-generating window. Interbedded coal may provide biogenic gas possibilities. The nonmarine strata is relatively porous in part, averaging about 12%.


Exploration risks

All of the Kandik plays are believed to have a high probability of existing (ie. low play risk). However, within each play, risks associated with individual prospects are evaluated in order to derive an exploration risk associated with each play. An important prospect-level risk in all Kandik plays is timing of trap formation with respect to hydrocarbon generation. In many cases, individual prospects have been unroofed by erosion compromising the entrapment structure and seal integrity of the individual trap. The fact that the Monster Formation and equivalents outcrop in the play area also adds to the risk for seal and closure. The prospect-level risk in the nonmarine play for reservoir facies is low with existence of reservoir considered to be certain (marginal probability: 1.0) (Appendix 2). The probability of charge by source rocks is considered to be high on a prospect level (0.8) (Appendix 2).

Play potential

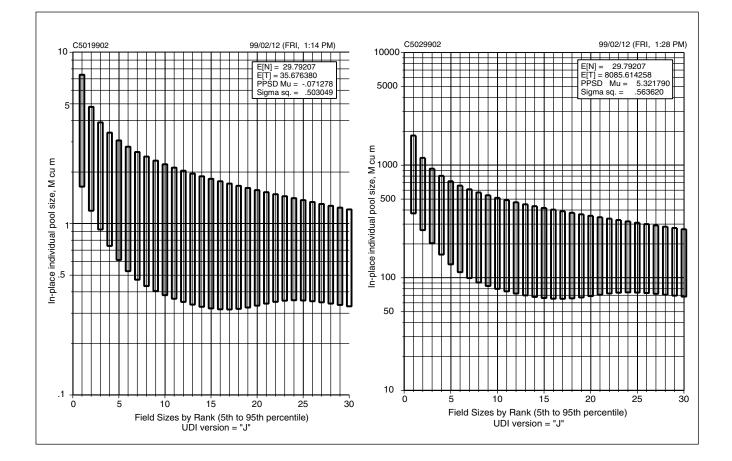
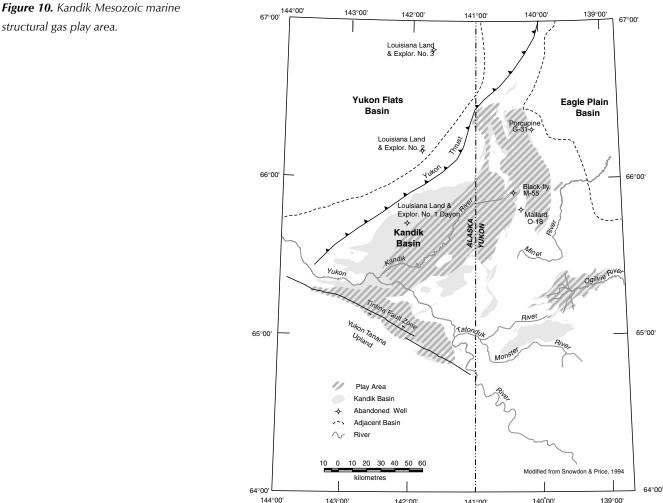

The Tertiary/Upper Cretaceous nonmarine play has an estimated in-place median oil and gas potential of 26 million m³ and 5.9 billion m³, respectively (Figures 6 and 7; Table 1). The mean value of the number of predicted fields is 30 for both plays. The largest undiscovered field is expected to contain 3.6 million m³ of oil and 856 million m³ of gas (median values) (Figures 8 and 9, Table 1). No fields with volumes greater than 160 million m³ of in-place oil or 3 billion m³ of gas are predicted to occur in these nonmarine plays (Figures 8 and 9). (See Appendix 3 for computation outputs.)

Figure 6. Estimate of in-place oil potential of the Kandik Tertiary/Upper Cretaceous nonmarine play. Median value of probabilistic assessment is 26 million m³ of in-place oil distributed in 30 fields. *Figure 7.* Estimate of in-place gas potential of the Kandik Tertiary/Upper Cretaceous nonmarine play. Median value of probabilistic assessment is 5863 million m³ of in-place gas distributed in 30 fields.

Figure 8. Field-size-by-rank plot of the Kandik Tertiary/Upper Cretaceous nonmarine oil play. Median value of the largest predicted field size is 3.6 million m³ of in-place oil.

Figure 9. Field-size-by-rank plot of the Kandik Tertiary/ Upper Cretaceous nonmarine gas play. Median value of the largest predicted field size is 856 million m³ of in-place gas.


Kandik Mesozoic MARINE STRUCTURAL OIL AND GAS PLAY

Play definition

This hydrocarbon play encompasses all structural traps involving Jurassic and Late Cretaceous reservoirs formed during post-Aptian compressional folding and thrusting. The play area illustrated on Figure 10 covers the region expected to contain gas in Mesozoic reservoirs. About 40% of the play area is located in the Yukon. It was determined that Mesozoic rocks with thermal maturity characteristics suitable for oil generation are restricted to Alaska. Consequently, no oil assessment was attempted for this play.

Geology

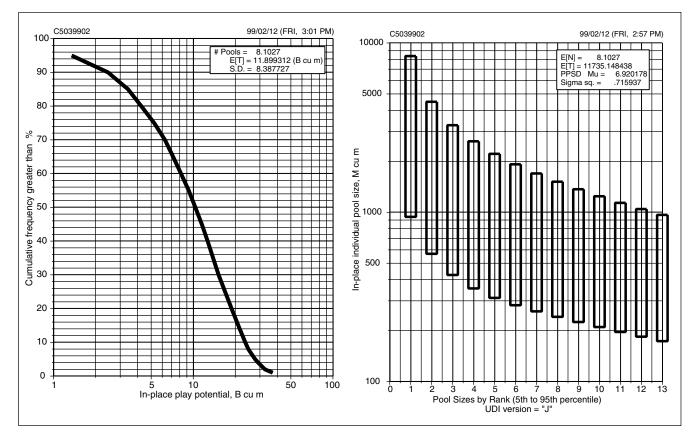
Martin Creek/Keenan Quartzite and Kathul coarse clastic units constitute the principal reservoirs in the Mesozoic hydrocarbon play. These units overlie the excellent petroliferous Glenn Formation. Secondary Paleozoic source rocks also underlie these reservoirs. Mount Goodenough and McGuire shales and siltstones provide both overlying and lateral seals. Trap types in Mesozoic strata include anticlines, overthrust

141°00'

142000

traps, drag folds on thrust faults and combined structural/unconformity traps. Porosities in these rocks are unknown, so geological analogues were used.

Exploration risks

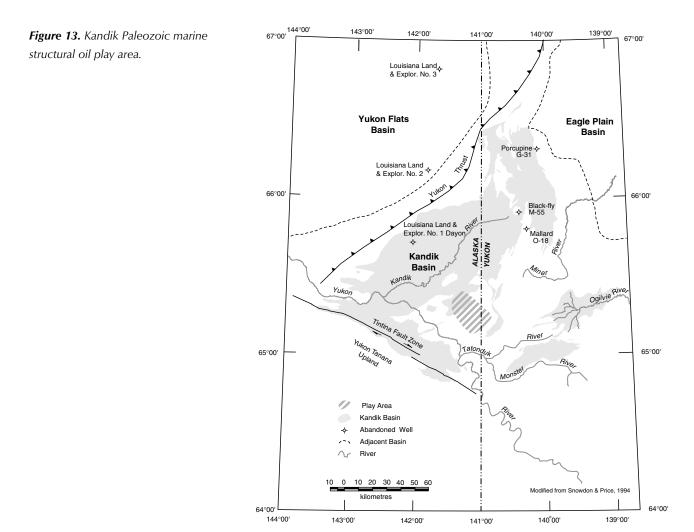

An important exploration risk for Mesozoic prospects is presence of closure where deep-seated erosion along crests of anticlines destroyed the integrity of many traps. The prospect-level risk for presence of closure in this play is 0.5. Another significant risk thought to be important in this assessment is the presence of sufficient porosity for hydrocarbon accumulation which is reflected in the 0.5 marginal probability assigned to the presence of reservoir facies risk factor (Appendix 2). The removal of seal strata as a result of erosion is also considered to be significant in this play (Appendix 2; adequate seal: 0.4).

Play potential

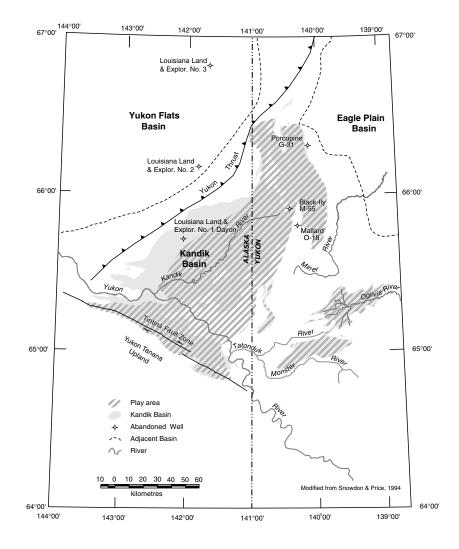
Estimates of the potential for the Mesozoic marine structural gas play show a median in-place volume of 10.35 billion m³ distributed in 8 fields (mean value) (Figures 11 and 12; Table 1). The largest undiscovered gas field is predicted to contain 3.11 billion m³ (median value) (Figure 12). One field greater in size than 3 billion m³ of in-place gas is predicted in this play (Figure 12).

Figure 11. Estimate of in-place gas potential of the Kandik Mesozic marine structural play. Median value of probabilistic assessment is 10,346 million m³ of in-place gas distributed in 8 fields.

Figure 12. Field-size-by-rank plot of the Kandik Mesozoic marine structural gas play. Median value of the largest predicted field size is 3110 million m³ of in-place gas.


Kandik Paleozoic MARINE STRUCTURAL OIL AND GAS PLAY

Play definition

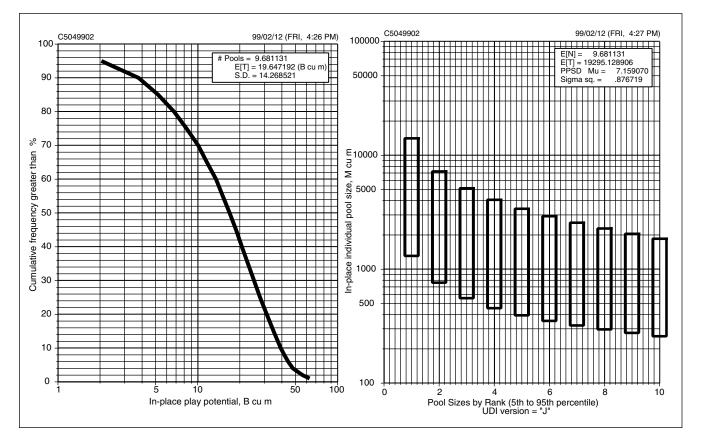

This hydrocarbon play involves all structures and prospects of Upper Proterozoic to Permian reservoir-quality strata in, within and beneath Kandik Basin. The Paleozoic gas play area encompasses most of the Kandik Basin and neighbouring depocentres (Figure 13). The play area is limited to the west by a zone of supermature strata where no hydrocarbon potential is present (Figure 13, in the vicinity of Doyon No. 1 well; Johnsson *et al.*, 1993). The area of oil potential is much smaller due to thermal maturity considerations in surface outcrops (Figure 14; Johnsson *et al.*, 1993; Hite, 1997).

Geology

Principal prospective targets in the Paleozoic structural play are carbonates of the Cambro-Ordovician Jones Ridge Formation, Devonian Ogilvie Formation, Carboniferous Hart River and Ettrain formations and the Permian Takhandit Formation. Clastic reservoirs of the Permian Jungle Creek Formation and limestones and sandstones in the Upper Proterozoic Tindir Group are also present. These units underlie the

excellent petroliferous Glenn Formation but numerous source rock horizons are interspersed in the Paleozoic succession. The Devonian Canol Formation contains TOC's up to 7% and the upper Road River Formation has TOC contents up to 5%. Upper Paleozoic Ford Lake shales contain organic carbon contents of up to 5% (Snowdon and Price, 1994; Appendix I). Numerous compressional structures affect Paleozoic rocks, such as anticlines, drag folds on thrust faults, overthrust traps, duplex structures, and combined structural/unconformity traps. Good seals are represented by the Adams argillite in the lower Jones Ridge Formation, the Road River Formation, Ford Lake shale, Glenn shale and Biederman argillite (Figure 3). Porosities in carbonates vary from 0 to 20%. Fracture porosity is very common with lesser intercrystalline porous strata present. Thermal maturity data from wells in Canada show generally very low TOC values in the Paleozoic section which, in addition to indicating the low original organic content, denotes that the rocks are relatively high thermal maturity (Snowdon and Price, 1994). The area of oil potential is at least 50 kilometres away from these wells, and the maturity data conclusions may not be relevant in the area. The fact that more than 20 bitumen occurrences have been observed in outcrop, indicates the unrealized oil potential (Hite, 1997).

Figure 14. Kandik Paleozoic marine structural gas play area.


Exploration risks

Significant geologic risk factors for the Paleozoic structural play are presence of closure and adequacy of reservoir (Appendix 2). Deep erosion along crests of anticlines destroys the integrity of many structural traps. Primary porosity is generally thought to be very low, but secondary fracture porosity has been observed. Primary generation, migration and accumulation of hydrocarbons occurs before many of the compressional structures were formed. However, overthrusting may produce a secondary hydrocarbon charge that would be trapped in previously formed structures.

Play potential

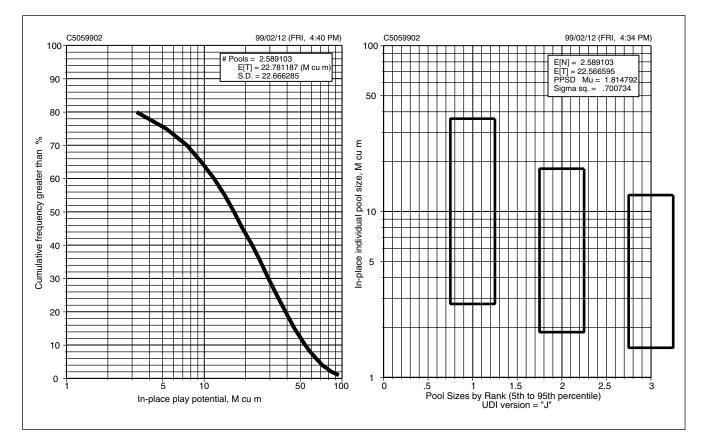

This play has an estimated in-place median gas potential of 17 billion m³ (Figure 15; Table 1). The mean value of the number of predicted fields is 10. The largest undiscovered gas field is expected to contain 5 billion m³ of gas (median value) (Figure 16). Potential for the Paleozoic oil play 16.5 million m³ (median in-place value) (Figure 17; Table 1). The estimate assumes a total field population of 3 (mean value), with the largest undiscovered field having an initial in-place volume of 11 million m³ of oil (Figure 18). Two individual undiscovered gas fields of greater than 3 billion m³ are predicted to occur in the play (Figure 16). No oil fields greater than 160 million m³ of in-place volume are expected in the oil play.

Figure 15. Estimate of in-place gas potential of the Kandik Paleozoic marine structural play. Median value of probabilistic assessment is 16,913 million m³ of in-place gas distributed in 10 fields. **Figure 16.** Field-size-by-rank plot of the Kandik Paleozoic marine structural gas play. Median value of the largest predicted field size is 4839 million m³ of in-place gas.

Figure 17. Estimate of in-place oil potential of the Kandik Paleozoic marine structural play. Median value of probabilistic assessment is 16.5 million m³ of in-place oil distributed in 3 fields.

Figure 18. Field-size-by-rank plot of the Kandik Paleozoic marine structural oil play. Median value of the largest predicted field size is 11 million m³ of in-place oil.

DISCUSSION OF ASSESSMENT RESULTS

Resource potential

Median estimates of total hydrocarbon potential for the Kandik Basin region (from all plays) are 54 million m³ (340 MMbbl) of in-place oil and 38 billion m³ (1.3 TCF) of in-place gas (Table 1; Figures 19 and 20). (Note that the total median estimates for the Kandik assessment region are not derived arithmetically by adding together the hydrocarbon potentials of individual plays. These numbers are summed using statistical techniques). High confidence (90% probability) and speculative (10% probability) estimates of total oil potential are 18 and 108 million m³ (113 and 678 MMbbl), respectively (Figure 19). High confidence and speculative estimates of gas potential are 19 and 64 billion m³ (657 and 2246 BCF), respectively (Figure 20). Individual field-size estimates display similar probability-dependent variations. The wide range of estimates of total potential and field sizes are typical of frontier region assessments and reflect the geological uncertainties in quantifying lightly explored or conceptual exploration plays.

Resource distributions

The highest oil potential or volume occurs in the Tertiary/Upper Cretaceous nonmarine play and highest gas potential in the Paleozoic marine structural play (Table 1). The largest individual oil and gas fields are expected to occur in the Paleozoic play, with median size estimates of 11 million m³ (72 MMbbl) of in-place oil and 4.8 billion m³ (170 BCF) of in-place gas. Individual field sizes for the major plays in the region (ie. plays with 8 or more expected fields) indicate that 40 to 80% of the individual play's

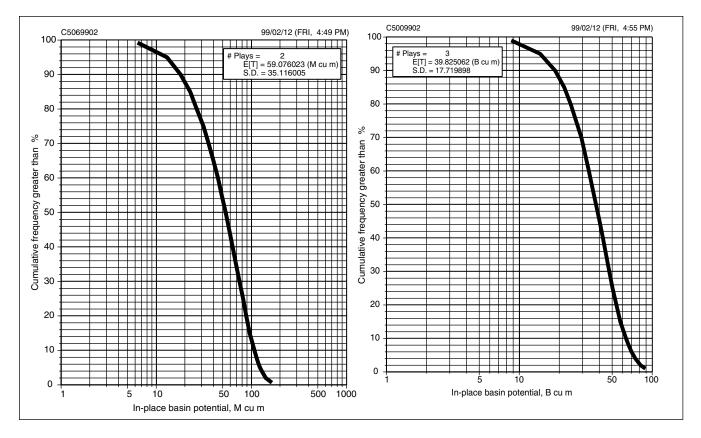
Play name	Median play potential (in-place) (million m ³)	Median of largest field size (in-place) (million m ³)	Scenario 1 Play potential in the Yukon (million m ³)	Scenario 2 Play potential in the Yukon (million m ³)
OIL PLAYS				
Tertiary/Upper Cretaceous nonmarine	26	3.6	12	8.8
Mesozoic marine structural	locat	ed in Alaska only; no	ot assessed	
Paleozoic marine structural	16.5	11	13.5	2.5
GAS PLAYS				
Tertiary/Upper Cretaceous nonmarine	5,863	856	2,849	1,993
Mesozoic marine structural	10,346	3,110	7,662	4,552
Paleozoic marine structural	16,913	4,839	13,634	8,795

Scenario 2: Largest undiscovered field is assumed to occur outside the Yukon.

Table 2. Oil and gas potential	in
Kandik Basin.	

total petroleum resource is expected to occur in the five largest oil and gas fields. This resource distribution indicates a moderately concentrated hydrocarbon habitat, typical of composite craton margin or rifted passive margin basins (Klemme, 1984).

The assessment results indicate the Paleozoic structural play is expected to contain about 45% of the region's total gas resource volume and 6 of the 10 largest fields, a concentration reflecting the greater number of reservoir horizons and size of closures within the thick Paleozoic succession. In contrast, oil resource distribution differs in that about 45% of the region's oil resource is concentrated in younger Tertiary/Upper Cretaceous nonmarine rocks while 7 of the 10 largest oil fields are expected to occur in the Paleozoic marine play. This distribution illustrates the numerous small structural and stratigraphic trapping configurations in the nonmarine play in contrast with the smaller number of larger-volume structures present in the Paleozoic play (Note that if the Mesozoic oil play was assessed, the oil distribution would be slightly different, but there is sufficient information to arrive at a general conclusion).


Assessment results and exploration history

The exploration risks estimated in the assessment suggest success rates for exploratory drilling in the Kandik Basin should average about 1 in 6. The absence of discoveries among the 4 wells drilled to date is reasonable. Historically, the first significant hydrocarbon discovery in a frontier region is often preceded by many unsuccessful exploration wells. Seismic coverage is sparse in the region, so many significant structures have not been recognized. Some of the wells were drilled in less than optimum locations; Doyon No. 1 well was drilled in an area of thermally supermature sediments and it did not penetrate below the Jurassic stratal horizon.

Distribution of resources in the Yukon

Hydrocarbon plays in Kandik Basin occupy areas on both sides of the Yukon/Alaska boundary. If it can be assumed that the hydrocarbon resource is evenly distributed throughout the play areas, the proportion of resource in the Yukon can be estimated by comparing play areas between the two countries. The location of the largest field cannot be determined, so two scenarios are proposed; scenario 1 where the largest field is assumed to be in the Yukon, and scenario 2 where the largest field is in Alaska. Table 2 itemizes the diminished oil and gas potential for Kandik Basin in the Yukon Territory under the two scenarios. About 35% of the play areas for the Tertiary/Upper Cretaceous nonmarine oil and gas play is located in the Yukon (Figure 5), so the amount of oil and gas predicted, if the largest undiscovered field is assumed to be in the Yukon is 12 million m³ and 2849 million m³, respectively. If, however, the largest field is assumed to be in Alaska, then the potential is estimated to be 8.8 million and 1993 million m³ of oil and gas, respectively (Table 2). The Mesozoic part of the succession has an oil and gas component, but thermal maturity considerations restrict the oil window to the Alaska portion of the basin. Consequently, no oil assessment was completed for the Mesozoic play. Natural gas potential is estimated to be 7662 and 4552 million m³ of in-place volumes under the two scenarios under the provision that 45% of the play area is in Yukon (Figure 10). About 15% of the Paleozoic play within the oil window is found in Canada (Figure 14). If the largest field is predicted to be in Yukon, then the oil potential is 13.5 million m³ in-place. On the other hand, the assumption that the largest field is not in the Yukon reduces the oil potential to only 2.5 million m³. This reflects the large trapping configurations in the play producing the relatively large oil

field accumulations (largest field size is predicted to be 11 million m³). In the much larger Paleozoic gas play area, 52% of the area is in Yukon (Figure 13). Scenario 1 indicates that the Yukon portion of Paleozoic gas is 13,634 million m³ in-place. Scenario 2 suggests that Yukon gas is 8,795 million m³.

Figure 19. Estimate of total oil potential for the Kandik region. Median value of probabilistic assessment is 54 million m³ of in-place oil.

Figure 20. Estimate of total gas potential for the Kandik region. Median value of probabilistic assessment is 37,792 million m³ of in-place gas.

CONCLUSIONS

The oil and gas resource potential of Kandik Basin has been evaluated through regional hydrocarbon play assessments. The quantitative assessments were derived using the Geological Survey of Canada's (PETRIMES) assessment methodology system. The assessments included analyses of 5 conceptual plays, each of which incorporated the calculation or estimation of field size parametric data, numbers of prospects and exploration risks. Oil and gas volumes reported for these conceptual plays are total statistical estimates of the resource present 'in the ground', not the volumes that are economically producible. Individual field-size determinations are important in identifying which plays are attractive for exploration programs.

Median estimates for total oil and gas potentials for all Kandik plays are 54 million m³ of in-place oil and 38 billion m³ of in-place gas (Figs. 19, 20; Table 1). In-place oil and gas potential for all plays except the Mesozoic marine oil play, encompasses both Yukon and Alaska portions of the basin. Mesozoic marine oil potential occurs in Alaska only.

Resource estimates are quoted initially for the entire area. After the numerical analysis, the total resource for the Yukon area is estimated proportionately by area and sedimentary volume, and separate cases are proposed based on location of the largest predicted field. The portion of the resource estimated to exist in the Yukon is 25.5 million m³ oil and 24,145 million m³ gas in the case where the largest pool occurs on the Yukon side of the border. The portion of the resource estimated to exist in the Yukon is 11.3 million m³ oil and 15,340 million m³ gas in the case where the largest pool is predicted to occur on the Alaska side of the border.

The potential for significant hydrocarbon accumulations in Kandik Basin is achieved by the combined presence of numerous and diverse trapping configurations, good to excellent petroleum source rocks in favourable stratal positions and reservoir-quality strata in some parts of the stratigraphic column. However, significant risks associated with breaching of traps associated with deep-seated erosion along crests of structures, lack of porosity in Paleozoic and Mesozoic strata, and thermal maturity considerations reduces overall hydrocarbon potential. Significant gas potential is predicted for the Mesozoic and Paleozoic marine structural plays, even though risk factors are substantial in the plays. Estimates for oil potential are less optimistic. The complex geology and anticipated high exploration risks associated with the plays suggest that considerable amounts of new seismic data and exploration wells may be required to properly evaluate the region's oil and gas potential.

REFERENCES

- **Bird, T.D., Barclay, J.E., Campbell, R.I., and Lee, P.J.**, 1994. Triassic gas resources of the Western Canada Sedimentary Basin; Part I. Geological play analysis and resource assessment; Geological Survey of Canada, Bulletin 483, 66 p.
- Brabb, E.E. and Churkin, M., Jr., 1969. Geologic map of the Charley River quadrangle, east-central Alaska; United States Geological Survey, Miscellaneous Geologic Investigations, Map I-573, Scale: 1:250,000.
- **Dixon, J.**, 1997. Cretaceous and Tertiary, Chapter 11; *In:* Geology and Mineral and Hydrocarbon Potential of Northern Yukon Territory and Northwestern District of Mackenzie; J.K. Norris (ed.); Geological Survey of Canada, Bulletin 422, p. 301-317.
- **Dixon J., Morrell, G.R., Dietrich, J.R., Procter, R.M., and Taylor, G.C.,** 1994. Petroleum resources of the Mackenzie Delta and Beaufort Sea; Geological Survey of Canada, Bulletin 474, 44 p.
- **Dover, J.H.**, 1992. Geologic map and fold- and thrust-belt interpretation of the southeastern part of the Charley River quadrangle, east-central Alaska; United States Geological Survey, Miscellaneous Investigations Series, Map I-1942, Scale: 1:1,000,000.
- Fritz, W.H., 1997. Cambrian, Chapter 5; *In*: Geology and Mineral and Hydrocarbon Potential of Northern Yukon Territory and Northwestern District of Mackenzie; J.K. Norris (ed.); Geological Survey of Canada, Bulletin 422, p. 85-117.
- Hite, D.M., 1997. A native corporation evaluates potential of Alaska's Kandik area; Oil and Gas Journal, Nov. 17, 1997, p. 89-93.
- Howell, D.G., 1996. Kandik Basin; In: 1995 National Assessment of United States Oil and Gas Resources-Results, Methodology, and Supporting Data; D.L. Gautier, G.L. Dolton, K.I. Takahashi and K.L. Varnes (eds.); U.S. Geological Survey Digital Data Series-30, Release 2, CD-ROM.
- **Inexco Oil Company,** 1970. Well history report, Inc Husky Amoco Black-fly YT M-55; Geological Survey of Canada internal files.
- **Inexco Oil Company,** 1971. Operations report of reflection and refraction survey of Kandik area, Yukon Territory; Geological Survey of Canada internal files.
- **Inexco Oil Company,** 1972a. Well history report, Inexco Husky et al Porcupine YT G-31; Geological Survey of Canada internal files.
- **Inexco Oil Company,** 1972b. Well history report, Inexco et al Mallard YT O-18; Geological Survey of Canada internal files.
- Johnsson, M.J., Howell, D.G. and Bird, K.J., 1998. Thermal maturity patterns in Alaska: Implications for tectonic evolution and hydrocarbon potential; American Association of Petroleum Geologists, Bulletin, v. 77, no. 11, p. 1874-1903.
- **Klemme, H.D.**, 1984. Field-size distribution related to basin characteristics; *In:* Petroleum Resource Assessment, C.D. Masters (ed.), International Union of Geological Sciences, Publication No. 17, p. 95-121.
- Lee, P.J., 1993. Two decades of Geological Survey of Canada petroleum resource assessments; Canadian Journal of Earth Sciences, v. 30, p. 321-332.
- Lee, P.J. and Tzeng, H.P., 1989. The petroleum exploration and resource evaluation system (PETRIMES): working reference guide; Institute of Sedimentary and Petroleum Geology, Calgary, Alberta, 258 p.
- Lee, P. J. and Wang, P.C.C., 1990. An introduction to petroleum resource evaluation methods; Canadian Society of Petroleum Geologists, 1990 Convention on Basin Perspectives, Short Courses Program: SC-2 Petroleum Resource Evaluation, 108 p.

- Masters, C.D., 1984. Petroleum resource assessment; International Union of Geological Sciences, Publication No. 17, 157 p.
- Norris, D.K., 1984. Geology of the northern Yukon and northwestern District of Mackenzie; Geological Survey of Canada, Map 1581A, scale 1:500,000.
- **Norris, D.K.**,1997. Geological setting, Chapter 3; *In:* Geology and Mineral and Hydrocarbon Potential of Northern Yukon Territory and Northwestern District of Mackenzie; J.K. Norris (ed.); Geological Survey of Canada, Bulletin 422, p. 21-64.
- **Northern Oil and Gas Directorate**, 1995. Kandik Basin, Chapter 3, Northern Yukon; *In:* Petroleum Exploration in Northern Canada: A Guide to Oil and Gas Exploration and Potential, G.R. Morrell (ed.); Indian and Northern Affairs Canada, p. 49-53.
- Podruski, J.A., Barclay, J.E., Hamblin, A.P., Lee, P.J., Osadetz, K.G., Procter, R.M., and Taylor, G.C., 1988. Conventional oil resources of Western Canada (light and medium), Part I: Resource endowment; Geological Survey of Canada, Paper 87-26, p. 1-125.
- **Potential Gas Committee**, 1990. Definitions and procedures for estimation of potential gas resources; Potential Gas Agency, Colorado School of Mines.
- Reinson, G.E., Lee, P.J., Warters, W., Osadetz, K.G., Bell, L.L., Price, P.R., Trollope, F., Campbell, R.I., and Barclay, J.E., 1993. Devonian gas resources of the Western Canada Sedimentary Basin; Part I: Geological play analysis and resource assessment; Geological Survey of Canada, Bulletin 452, p. 1- 127.
- **Rice, D.D.**, 1986. Oil and gas assessment methods and applications; American Association of Petroleum Geology, Studies in Geology, no. 21, 267 p.
- **Richards, B.C., Bamber, E.W., and Utting, J.**, 1997. Upper Devonian to Permian, Chapter 8; *In:* Geology and Mineral and Hydrocarbon Potential of Northern Yukon Territory and Northwestern District of Mackenzie; J.K. Norris (ed.); Geological Survey of Canada, Bulletin 422, p. 201-251.
- **Ricketts, B.D.**, 1988. The Monster Formation: A coastal fan system of Late Cretaceous age, Yukon Territory; Geological Survey of Canada, Paper 86-14, 27 p.
- Sinclair, I.K., McAlpine, K.D., Sherwin, D.F., and McMillan, N.J., 1992. Petroleum resources of the Jeanne D'Arc Basin and environs; Part I: Geological Framework; Geological Survey of Canada, Paper 92-8.
- Snowdon, L.R. and Price, P.R., 1994. Rock-eval/TOC data for three wells in the Kandik Basin, western Yukon Territory; Geological Survey of Canada, Open File 2899, 31 p.
- Wade, J.A., Campbell, G.R., Procter, R.M., and Taylor, G.C., 1989. Petroleum resources of the Scotian Shelf; Geological Survey of Canada, Paper 88-19, 26 p.
- White, D.A. and Gehman, H.M., 1979. Methods of estimating oil and gas resources; American Association of Petroleum Geologists, Bulletin, v. 63, no. 12, p. 2183-2192.

APPENDIX 1

ROCK-EVAL/TOC DATA FOR THREE WELLS IN THE KANDIK BASIN, WESTERN YUKON TERRITORY

Lloyd R. Snowdon Geological Survey of Canada, 3303-33 Street N.W. Calgary, Alberta T2L 2A7

Paul R. Price National Energy Board, 311-6 Avenue S.W. Calgary, Alberta T2P 3H2

Rock-Eval/TOC pyrolysis analyses have been carried out for the following three wells in the Kandik Basin, Yukon Territory:

- Inexco Husky Amoco Black-fly M-55 (65°54'55"N 140°25'55"W),
- Inexco Mallard YT O-18 (65°47'58.00"N 140°17'41"W), and
- Inexco Husky Porcupine G-31 (66°20'22"N 140°06'13"W).

These wells were drilled between 1970 and 1972 and "excess bag cuttings" stored at the Institute of Sedimentary and Petroleum Geology since that time were the samples used for this study. Similar work carried out in Eagle Plains Basin (Snowdon, 1988) on old cuttings yielded very good results and so the rather negative results obtained for these wells are presumed to actually be representative of the sections drilled.

The raw data are presented in Table 1 (also on diskette) and Figures 1 to 3. All depths are reported in feet because these are the units in which the wells were drilled and in which the well data are reported. The results indicate that the entire section represented in all three of these wells is at a high level of thermal maturity. With the exception of selected intervals within the Ford Lake shale in the Mallard YT O-18 well (thrust repeated) and the shallowest portion of the Porcupine G-31 well (Devonian), very few samples have total organic carbon (TOC) contents in excess of 1%. The low TOC values reflect the high maturity as well as the original organic content of these rocks.

These results are consistent with high vintrinite reflectance values (generally >2% VRo) reported by Underwood et al. (1992, Figure 8) for the Kandik River belt on the north side of the Glenn Creek Fault on the Alaska side of the border.

It must be concluded that there is no residual oil generation potential and limited to no gas generation potential for the Paleozoic sections represented in these wells. Indications from the Alaska data are that there may be some residual petroleum potential for Mesozoic and Tertiary sections over part of the Canadian portion of the Kandik Basin.

SELECTED REFERENCES

- Laughland, M.M, Underwood, M.B. and Wiley, T.J. 1990. Thermal maturity, tectonostratigraphic terranes, and regional tectonic history; an example from the Kandik area, east-central Alaska; *In:* V.F. Nuccia, C.E. Barker, and S.J. Dyson (eds.) Applications of thermal maturity studies to energy exploration; Eastwood Printing and Pulishing, Denver, Colorado; p. 97-112.
- Snowdon, L.R., 1988. Petroleum source rock potential and thermal maturation reconnaissance in Eagle Plain, Yukon Territory; Geological Survey of Canada Open File Report 1720, 115 p.
- Underwood, J.B., Brocculeri, T., Bergfeld, D., Howell, D.G. and Pawlewicz, M.J., 1992. Statistical comparison between illite crystallinity and vitrinite reflectance, Kandik region of eastcentral Alaska; *In*: D.C. Bradley and C. Dusel-Bacon (eds.) Geologic Studies in Alaska, United States Geological Survey Bulletin 2041, p. 3222-237.
- Underwood, M.B., Laughland, M.M., Wiley, T.J. and Howell, D.G., 1989. Thermal maturity and organic geochemistry of the Kandik Basin region, east-central Alaska; United States Geological Survey Open File Report 89-0353, 41 p.

Other similar GSC Rock-Eval data available in GSC Open File Reports

- Fowler, M.G. and Snowdon, L.R., 1988. Rock-Eval/TOC data from an additional seven wells located within the Jeanne d'Arc Basin, offshore Newfoundland; Geological Survey of Canada Open File Report 1735, 48 p.
- Fowler, M.G. and Snowdon, L.R., 1989. Rock-Eval/TOC data from wells located in the southern Grand Banks and the Jeanne d'Arc basin, offshore Newfoudland; Geological Survey of Canada Open File Report 2025, 37 p.
- Fowler, M.G., Snowdon, L.R., Stewart, K.R. and McAlpine, K.D., 1990. Rock-Eval/TOC data from 9 wells located offshore Newfoundland; Geological Survey of Canada Open File Report 2271, 74 p.
- Fowler, M.G., Snowdon, L.R., Stewart, K.R. and McAlpine, K.D., 1991. Rock-Eval/TOC data from five wills located within the Jeanne d'Arc Basin, offshore Newfoundland; Geological Survey of Canada Open File Report 2392, 41 p.
- Leckie, D.A., Kalkreuth, W.D. and Snowdon, L.R., 1987. Results of Rock-Eval/ TOC analysis of core through the Lower Cretaceous; Monkman Pass area, northeastern British Columbia; Geological Survey of Canada Open File Report #1516, 49 p.
- **Riediger, C.L.,** 1990. Rock-Eval/TOC data from the lower Jurassic "Nordegg Member", and the lower and middle Triassic Doig and Montney formations, Western Canada Sedimentary Basin, Alberta and British Columbia; Geological Survey of Canada Open File Report 2308, 27 p.
- **Snowdon, L.R.**, 1993. Rock-Eval/TOC results from 14 southwest Alberta wells, Townships 3-26: Ranges 1-8W5; Geological Survey of Canada Open File Report 2670, 190 p.
- Snowdon, L.R., 1990. Rock-Eval/TOC results from 29 Beaufort-Mackenzie wells; Geological Survey of Canada Open File Report #2192, 209 p.
- Snowdon, L.R., 1990. Rock-Eval/TOC data for 55 northwest and Yukon Territories wells (60-69 degrees N); Geological Survey of Canada Open File Report 2327, 211 p.
- **Snowdon, L.R.**, 1988. Petroleum source rock potential and thermal maturation reconnaissance in Eagle Plain, Yukon Territory; Geological Survey of Canada Open File Report 1720, 115 p.
- Snowdon, L.R. and Fowler, M.G., 1986a. Rock-Eval/TOC data from seven wells located within the Jeanne d'Arc Basin, offshore Newfoundland; Geological Survey of Canada Open File Report #1382, 42 p.
- Snowdon, L.R. and Fowler, M.G., 1986b. Oil Show Analyzer, Rock-Eval and TOC data for six Scotian Shelf wells; Geological Survey of Canada Open File Report #1403, 49 p.

INEXCO HUSKY AMOCO BLACKFLY M-55 0 6030 300 .50

						INEX	CO HUS	KY AM	OCO BLA	CKFLY M-5	55 0	6030	300 .50)					
DEPTH TOO	С	PI	S1+S2	TMAX	S1	S2	S 3	HI	OI	DEPTH	тос	PI	S1+S2	TMAX	S1	S 2	S 3	HI	OI
60F .54	4	61	.74	366	.45	.29	.84	53	155	2430	.25	.74	.27	325	.20	.07	.21	27	84
90 .7		56	1.65	377	.92	.73	1.19	94	155	2460	.11	.87	.16	0	.14	.07	.29	18	263
120 .8		59	2.30	379	1.35	.95	1.38	115	168	2490	.22	.63	.27	0	.17	.10	.45	45	204
140 .7		54	1.89	378	1.03	.86	1.23	111	159	2520	.37	.77	.26	393	.20	.06	.38	16	102
180 .7		58	1.86	371	1.08	.78	1.32	98	167	2550	.27	.70	.43	369	.30	.13	.33	48	122
<u>240</u> .3 270.7		69 51	.48	332	.33	.15 .62	.20	46	62	2580	.13	<u>1.00</u> .89	.10 .19	0	.10 .17	.00	.25	0	192
270 .79		51 49	2.28	345 372	.65 1.12	1.16	<u>1.31</u> 1.42	78 133	<u>165</u> 163	<u>2610</u> 2640	.18	.69	.19	325	.17	.14	.29	58	<u>161</u> 116
330 .5		61	1.02	371	.62	.40	.52	72	94	2650	.18	.71	.72	377	.51	.21	.14	116	77
360 .6		56	1.31	337	.74	.57	1.05	95	175	2670	.03	1.00	.10	0	.10	.00	.28	0	933
390 .54		71	.76	369	.54	.22	.19	40	35	2700	.15	.88	.24	0	.21	.03	.35	20	233
420 .4		75	.51	0	.38	.13	.18	29	40	2730	.07	.86	.21	0	.18	.03	.09	42	128
470 .54		69 66	.78	382 369	.54	.24	.23	44	42 140	2760 2790	.04	1.00	.07	0	.07	.00.	.11	0	275 325
540 .6		68	.82	374	.56	.22	.49	44	80	2820	.65	.83	4.19	425	3.46	.73	.20	112	56
570 .5		64	1.14	362	.73	.41	.40	77	75	2850	.11	.93	.30	0	.28	.02	.21	18	190
600 .5	2.	70	.80	368	.56	.24	.39	46	75	2880	.20	.75	.44	345	.33	.11	.28	55	140
630 .6		63	1.45	384	.92	.53	.59	88	98	2910	.20	.73	.44	326	.32	.12	.22	60	110
700 .9		62	3.48	372	2.16	1.32	1.12	146	124	2940	.23	.81	.21	0	.17	.04	.21	17	91
770 .5 810 .5		67 63	.83 1.16	374 374	.56 .73	.27 .43	.52	48 72	<u>92</u> 55	<u>2970</u> 3000	.14	.71 .73	.48	325	.34	.14	.11	100 38	78 123
840 .6		56	1.71	394	.95	.76	.57	110	82	3030	.17	.65	.37	330	.24	.13	.15	76	88
870 .4		69	.75	363	.52	.23	.21	46	42	3060	.05	.92	.12	0	.11	.01	.12	20	240
900 .5		67	.81	372	.54	.27	.59	48	105	3090	.10	.79	.29	408	.23	.06	.13	60	130
930 .54		75	.55	362	.41	.14	.25	25	46	3120	.18	.72	.47	324	.34	.13	.10	72	55
<u>940</u> .5		72	.64	366	.46	.18	.41	<u>33</u> 45	77	3150	.23	.78 .87	.41	0	.32	.09	.15 .10	39 26	65
<u>990 .5</u> 1020 .6		71 69	2.03	364 367	1.41	.23	.33	<u>45</u> 89	<u>64</u> 39	<u>3180</u> 3210	.15 .22	.07	.32	368	.28	.10	.10	45	<u>66</u> 81
1050 .4		70	.63	365	.44	.19	.22	40	46	3240	.27	.78	.73	365	.57	.16	.27	59	100
1080 .4	3.	77	.65	361	.50	.15	.19	34	44	3280	.26	.80	.40	0	.32	.08	.15	30	57
1110 .5		72	1.42	373	1.02	.40	.23	78	45	3300	.30	.68	.50	327	.34	.16	.13	53	43
1140 .5		68	1.39	375	.95	.44	.35	78	62	3330	.25	.78	.32	0	.25	.07	.14	27	55
<u>1170</u> .5 1200.5		69 70	<u>1.01</u> 1.79	<u>367</u> 373	.70 1.25	<u>.31</u> .54	.51 .49	<u>62</u> 91	<u>102</u> 83	<u>3360</u> 3390	.20	.83 .79	.75	<u>304</u> 380	.62	<u>.13</u> .11	.18 .13	65 52	<u>90</u> 61
1230 .4		75	.51	368	.38	.13	.55	32	137	3420	.20	.72	.50	380	.36	.14	.20	70	100
1260 .5		52	1.19	344	.62	.57	1.31	101	233	3450	.34	.74	.80	370	.59	.21	.21	61	61
1290 .5		63	.70	370	.44	.26	.74	52	148	3480	.25	.78	.49	336	.38	.11	.16	44	64
1320 .5		69 69	1.19	381	.82	.37	.87	72	170	3510	.28	.73	.88	370	.64	.24	.12	85	42
<u>1350 .4</u> 1380 .3		69 70	<u>1.34</u> .47	382 352	<u>.92</u> .33	.42	.52	105 37	130 129	<u>3550</u> 3570	.31 .23	.72	.81 .62	374 376	.58	.23	<u>.19</u> .10	74 82	<u>61</u> 43
1410 .3		65	.54	368	.35	.19	.50	61	161	3600	.20	.76	.54	309	.41	.13	.07	65	35
1440 .4		66	.87	367	.57	.30	.30	68	68	3630	.20	.71	.59	350	.42	.17	.08	85	40
1460 .5		69	.99	365	.68	.31	.16	60	31	3660	.33	.69	.96	380	.66	.30	.16	90	48
1500 .5		63	1.52	373	.95	.57	.30	111	58	3690	.21	.75	.51	374	.38	.13	.14	61	66
<u>1540 .1</u> 1570 .1		73 66	.67 .61	<u>366</u> 401	.49	.18 .21	.12	105 140	70 100	<u>3720</u> 3750	.28	.67 .74	.84	<u>386</u> 330	.56	.28	.16	<u>100</u> 90	<u>57</u> 70
1590 .1		79	.43	314	.40	.09	.13	90	120	3780	.20	.66	.34	386	.23	.16	.12	80	60
1620 .1		78	.67	377	.52	.15	.21	93	131	3810	.23	.68	.66	392	.45	.21	.34	91	147
1680 .2		73	.40	363	.29	.11	.09	55	45	3840	.26	.70	.64	377	.45	.19	.25	73	96
1710 .3		62	.93	372	.58	.35	.18	109	56	3870	.06	.79	.39	396	.31	.08	.05	133	83
<u>1740</u> .3- 1770.1		52 92	.77	401 323	.40 .51	<u>.37</u> .11	.23	108	159	<u>3900</u> 3930	.45	.84	3.50	431	<u>2.93</u> .16	.57	.32	<u>126</u> 0	<u>71</u> 150
<u>1770</u> .1 1800.1		82 80	.82	323	.51	.16	.27	64 88	<u>158</u> 138	3960	.02	.92	.16 .51	0	.10	.00	.03	66	133
1830 .2		70	.82	373	.57	.25	.15	108	65	3990	.00	.88	.34	0	.30	.04	.07	100	174
1830 .1		71	.52	377	.37	.15	.10	125	83	4030	.04	.95	.21	0	.20	.01	.05	25	125
1860 .3		68	1.87	379	1.27	.60	.23	157	60	4050	.03	.96	.26	0	.25	.01	.13	33	433
<u>1890</u> .1		79 70	.85	379	.67	.18	.38	112	237	4080	.04	1.00	.28	0	.28	.00	.07	0	174
<u>1920</u> .13 1950.13		70 78	.84	<u>367</u> 393	.59 .57	.25	.32	138 133	<u>177</u> 183	4110 4140	.07	.96 .96	.28	354	.27	.01	.23	33	328 533
1980 .0.		91	.22	327	.20	.02	.11	40	220	4170	.05	1.00	.13	0	.13	.00	.13	0	260
2010 .3		67	.61	371	.41	.20	.16	64	51	4200	.03	1.00	.13	0	.13	.00	.10	0	333
2040 .1.		81	.26	373	.21	.05	.26	38	200	4230	.09	.88	.26	0	.23	.03	.12	33	133
2070 .2		69 74	.64	368	.44	.20	.19	71	67	4260	.02	1.00	.15	0	.15	.00	.13	0	650
<u>2100</u> .09 2130 .01		74 79	.35	403	.26	.09	.13	100 100	<u>144</u> 733	4290	.05	.94 1.00	<u>.17</u> .11	0	.16	.01	.23	0	260
2160 .2		79 67	.14	374	.11	.03	.22	39	735	4320	.05	.57	.11	421	.11	.12	.13	150	412
2190 .2		71	.28	364	.22	.08	.26	38	123	4380	.03	1.00	.09	0	.09	.00	.06	0	200
2220 .14	4.	91	.11	336	.10	.01	.20	7	142	4410	.04	.95	.19	0	.18	.01	.08	25	200
2250 .2		61	.57	378	.35	.22	.57	75	196	4440	.08	.84	.38	0	.32	.06	.15	75	187
2280 .2		70 75	.30	343	.21	.09	.32	34	123	4470	.06	.95	.20	0	.19	.01	.08	16	133
<u>2310</u> .22 2340.22		7 <u>5</u> 67	.32	370 373	.24	.08	<u>.16</u> .14	28 46	<u>57</u> 50	4510 4530	.07	.95 .95	.20	0	.19 .20	<u>.01</u> .01	.10	<u>14</u> 9	<u>142</u> 90
2370 .2		74	.40	323	.27	.07	.14	33	61		.11	.,,,	.41	U	.20	.01	.10	9	
										I									

DEPTH	тос	PI	\$1+\$2	тмах	S1	S 2	S 3	ні	OI
4560	.03	1.00	.14	0	.14	.00	.16	0	533
4590	.08	.89	.37	0	.33	.04	.10	50	125
4620	.02	1.00	.09	0	.09	.00	.06	0	300
4650	.12	.80	.20	0	.16	.04	.08	33	66
4680	.10	.87	.23	379	.20	.03	.09	30	90
4710	.10	.90	.20	420	.18	.02	.05	20	50
4740	.10	.84	.32	0	.27	.05	.08	50	80
4770	.09	.82	.17	0	.14	.03	.15	33	166
4800	.16	.88	.17	0	.15	.02	.11	12	68
4830	.20	.94	.17	0	.16	.01	.16	5	80
4860	.16	.78	.27	0	.21	.06	.11	37	68
4890	.17	.88	.24	401	.21	.03	.08	17	47
4910	.25	.51	.85	387	.43	.42	.17	168	68
4950	.10	.81	.36	313	.29	.07	.14	70	140
4980	.08	1.00	.15	0	.15	.00	.06	0	75
5010	.12	.81	.21	0	.17	.04	.11	33	91
5040	.15	.72	.36	0	.26	.10	.06	66	40
5070	.21	.77	.31	0	.24	.07	.09	33	42
5100	.18	.66	.35	318	.23	.12	.10	66	55
5130	.14	.56	.18	408	.10	.08	.11	57	78
5160	.17	.78	.72	395	.56	.16	.20	94	117
5190	.09	.92	.12	0	.11	.01	.07	11	77
5200	.15	.65	.26	342	.17	.09	.21	60	140
5310	.18	.75	.20	0	.15	.05	.24	27	133
5340	.17	.67	.18	323	.12	.06	.15	35	88
5370	.18	.73	.22	380	.16	.06	.26	33	144
5400	.31	.88	1.97	374	1.74	.23	.08	74	25

INEX	CO HUS	SKY AM	OCO BLA	CKFLY M-	55 0	6030	300 .50)					
S 2	S 3	н	OI	DEPTH	тос	PI	S1+S2	тмах	S1	S2	\$3	ні	OI
.00	.16	0	533	5430	.22	.67	.43	386	.29	.14	.11	63	50
.04	.10	50	125	5460	.15	.75	.12	0	.09	.03	.14	20	93
.00	.06	0	300	5490	.20	.90	.10	0	.09	.01	.25	5	125
.04	.08	33	66	5520	.17	1.00	.07	0	.07	.00	.22	0	129
.03	.09	30	90	5550	.20	.75	.08	0	.06	.02	.24	10	120
.02	.05	20	50	5580	.18	.78	.18	0	.14	.04	.11	22	61
.05	.08	50	80	5610	.13	1.00	.07	0	.07	.00	.12	0	92
.03	.15	33	166	5640	.15	1.00	.08	0	.08	.00	.14	0	93
.02	.11	12	68	5670	.15	1.00	.11	0	.11	.00	.10	0	66
.01	.16	5	80	5700	.30	.74	.42	0	.31	.11	.06	36	20
.06	.11	37	68	5730	.19	.92	.12	0	.11	.01	.22	5	115
.03	.08	17	47	5760	.13	.82	.11	0	.09	.02	.13	15	100
.42	.17	168	68	5790	.25	.92	.12	0	.11	.01	.29	4	116
.07	.14	70	140	5820	.25	.72	.18	305	.13	.05	.19	20	76
.00	.06	0	75	5850	.27	.78	.36	0	.28	.08	.14	29	51
.04	.11	33	91	5880	.23	.82	.22	0	.18	.04	.11	17	47
.10	.06	66	40	5910	.26	.83	.24	0	.20	.04	.08	15	30
.07	.09	33	42	5940	.28	.90	.21	0	.19	.02	.14	7	50
.12	.10	66	55	5970	.33	.85	.20	382	.17	.03	.12	9	36
.08	.11	57	78	6000	.71	.81	3.54	373	2.88	.66	.14	92	19
.16	.20	94	117	6030	.53	.79	.62	390	.49	.13	.05	24	9
 01	07	11	77										

Jungle Creek Fm	-1528F
Ettrain Fm	-3887
Blackie Fm	-4644
Ford Lake Sh	-6790

1

Dependence P SH-28 TAMA SH SH D Dependence P SH-28 TAMA SH SH D SH SH SH SH SH								INEXC	O MAL	LARD YT	O-18 01	0440	300 .50)						
	DEPTH	тос	PI	S1+S2	TMAX	S1	S2	S 3	н	OI	DEPTH	тос	PI	S1+S2	TMAX	S1	S2	S 3	HI	OI
140 65 78 16 0 14 04 10 6 15 120 A5 100 10 0 0 10 0 0 10 2200 30 10 10 0 0 10 2200 33 11 10 10 0 10 <td></td>																				
170 45 100 10 0.0 0.35 0.122 2280 46 71 35 304 25 06 08 22 220 35 010 10 20 25 06 02 15 16 15 16 15 16 15 16 15 16 15 16 15 16 17 18 250 27 25 16 09 16 17 18 16 17 18 16 17 18<																				
1200 33 100 100 0.0 0.8 0.22 230 34 11 16 0 11 0.1 0.0 7 11 240 31 55 56 95 31 12 23 240 240 31 25 35 31 25 31 25 31 25 35 31 25 31 25 31 25 31 25 31 25 31 25 31 25 31 25 31 25 31																				
1200 138 A1 16 0 11 A3 07 7 16 1448 35 36 395 31 25 34 7 20 35 36 395 31 25 34 75 36 395 31 25 34 75 36 395 31 25 34 75 36 395 31 75 36 395 31 75 36 395 31 75 36 395 31 75 36 395 31 75 36 315 36 395 31 25 34 16 66 66 36 31 31 35 36 395 31																				
1200 44 7.4 7.12 17.5 7.6 7.6 7.6 7.7 7.7 7.6 7.7 7.7 7.6 7.7 </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>					-										-					
1290 34 100 1.4 00 1.6 00 0.0 210 33 74 1.9 1.91 1.91 1.16 3.33 350 45 3.2 1.1 1.65 3.4 1.02 1.2 2.1 1.1 1.66 3.1 1.20 1.2					-															
320 33 75 24 836 75 24 836 75 24 836 75 24 836 75 24 836 75 24 836 75 24 836 75 24 836 75 24 836 75 24 836 75 24 836 75 24 71 72 72 74 86 410 27 10 11 11 11 11 12 11 13 10 13 11 13 10 13 11 13 10 13 11 13 10 13 12 11 13 10 13 11 13 11 13 11 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 14 14 14																				
470 33 1.00 .07 0 0.7 0.0 0.6 0 18 500 22 0.0 .08 .00 .04 .01 .13 .14 .07 .15 .10 .23 .50 .12 .37 .00 .08 .00 .04 .01 .13 .23 .50 .07 .14 .23 .25 .25 .25 .25 .25 .13 .07 .14 .20 .14 .23 .29 .0 .08 .10 .14 .24 .14 .24 .14 .23 .29 .0 .08 .14 .13 .14 .24 .14 .24 .14 .24 .14 .24 .14 .24 .14 .24 .14 .24 .14 .24 .24 .24 .24 .25 .25 .26 .11 .11 .11 .14 .24 .24 .24 .24 .24 .24 .24																				
500 29 100 .08 0 0.0 0.4 0 13 34 0 93 13 34 94 95 13 14 24 24 250 23 25 0 23 16 09 11 13 44 14 24 560 32 56 09 36 0.5 0.4 10 12 31 12 28 14 14 14 14 14 14 14 14 14 14 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																				
															-					
															-					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															-					
	-														-					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-																			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															0					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.29	339		.14		116					.22	301	.16	.06	.11	24	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.06		.05	380	.02	.03		50								.09		40	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1130	.12	.38	.13	374	.05	.08	.03	66		3380	.15	.75	.08	0	.06	.02	.08	13	53
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1160	.07	.67	.06	317	.04	.02	.03	28	42	3440	1.41	.68	.38	319	.26	.12	.14	8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1190	.03	.38	.08	321	.03	.05	.01	166	33	3470	3.48	1.00	.02	0	.02	.00	.23	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1250	.06	1.00	.05	0	.05	.00	.02	0		3500	4.31	1.00	.02	0	.02	.00	.38	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1280	.06	.67	.09	0	.06	.03	.06	50	100	3530	4.22	.00	.01	0	.00	.01	.37	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1310	.11	.52	.23	0	.12	.11	.19	100	172	3560	3.44	.75	.08	377	.06	.02	.30	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1340	.10	.85	.13	312	.11	.02	.06	20	60	3590	3.82	.71	.07	306	.05	.02	.40	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1370	.14	.82	.17	312	.14	.03	.04	21	28	3620	4.02	.00	.01	0	.00	.01	.28	0	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1400	.14	.81	.21	424	.17	.04	.05	28	35	3650	.94	.82	.22	0	.18	.04	.14	4	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1430	.35	.96	.23	0	.22	.01	.06	2	17	3650	3.08	.00	.01	0	.00	.01	.27	0	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1460	.19	.71	.28	304	.20	.08	.06	42	31	3710	.54	.61	.23	312	.14	.09	.10	16	18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1490	.05	.75	.16	300	.12	.04	.07	80	140	3740	.85	1.00	.08	0	.08	.00	.08	0	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1550							.05		31	3800	.95			0					12
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
1850 .50 .63 .67 385 .42 .25 .13 50 26 1880 .33 .86 .14 324 .12 .02 .06 6 18 1910 .41 .67 .43 416 .29 .14 .14 34 34 1940 .20 .63 .38 385 .24 .14 .07 70 34 31 .93 .14 0 .13 .01 .07 2 14 1940 .20 .63 .38 385 .24 .14 .07 70 34 31 2000 .40 .92 .12 0 .11 .01 .05 2 12 2030 .25 .58 .43 409 .25 .18 .15 72 60 2040 .33 .72 .36 .379 .26 .10 .10 30 30 4310 .61 .82 .17 0 .14 .03 .08 4 13																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
1940 .20 .63 .38 385 .24 .14 .07 70 35 1970 .38 .73 .48 354 .35 .13 .12 34 31 2000 .40 .92 .12 0 .11 .01 .05 2 12 2030 .25 .58 .43 409 .25 .18 .15 72 60 2060 .33 .72 .36 379 .26 .10 .10 30 30 2090 .23 .54 .37 408 .20 .17 .12 73 52 2120 .19 .81 .21 327 .17 .04 .10 21 52 .81 .17 .04 .09 7 16 4310 .61 .82 .17 .04 .09 7 16 4320 .25 .68 .25 326 .17 .08 .66 32 24 4400 .56 .84 .19 <																				
1970 .38 .73 .48 354 .35 .13 .12 34 31 2000 .40 .92 .12 0 .11 .01 .05 2 12 2030 .25 .58 .43 409 .25 .18 .15 .72 .60 2060 .33 .72 .36 379 .26 .10 .10 30 30 2090 .23 .54 .37 408 .20 .17 .12 73 .52 2120 .19 .81 .21 327 .17 .04 .10 21 .27 .36 .39 .23 .44 .03 .08 4 13 2150 .25 .68 .25 326 .17 .04 .10 21 55 .81 .21 .31 .09 .7 16 410 .55 .81 .21 .31 .04 .09 .7 16 2150 .25 .68 .40 .394 .25																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
2030 .25 .58 .43 409 .25 .18 .15 72 60 2060 .33 .72 .36 379 .26 .10 .10 30 30 2090 .23 .54 .37 408 .20 .17 .12 73 52 2120 .19 .81 .21 327 .17 .04 .10 21 52 2150 .25 .68 .25 326 .17 .08 .66 32 24 2180 .26 .63 .40 394 .25 .15 .09 57 .34 2210 .44 .80 .25 .309 .20 .05 .06 11 13																				
2060 .33 .72 .36 379 .26 .10 .10 30 30 2090 .23 .54 .37 408 .20 .17 .12 73 52 2120 .19 .81 .21 327 .17 .04 .10 21 52 2150 .25 .68 .25 326 .17 .08 .06 32 24 2180 .26 .63 .40 394 .25 .15 .09 57 34 2210 .44 .80 .25 309 .20 .05 .06 11 13																				
2090 .23 .54 .37 408 .20 .17 .12 73 52 2120 .19 .81 .21 327 .17 .04 .10 21 52 2150 .25 .68 .25 326 .17 .08 .06 32 24 2180 .26 .63 .40 394 .25 .15 .09 57 34 2210 .44 .80 .25 309 .20 .05 .06 11 13																				
2120 .19 .81 .21 327 .17 .04 .10 21 52 2150 .25 .68 .25 326 .17 .08 .06 32 24 2180 .26 .63 .40 394 .25 .15 .09 57 34 2210 .44 .80 .25 309 .20 .05 .06 11 13																				
2150 .25 .68 .25 326 .17 .08 .06 32 24 2180 .26 .63 .40 394 .25 .15 .09 57 34 2210 .44 .80 .25 309 .20 .05 .06 11 13																				
2180 .26 .63 .40 394 .25 .15 .09 57 34 2210 .44 .80 .25 309 .20 .05 .06 11 13 4430 .64 .60 .43 381 .26 .17 .11 26 17 4460 .60 .88 .17 343 .15 .02 .11 3 18																				
2210 .44 .80 .25 309 .20 .05 .06 11 13 4460 .60 .88 .17 343 .15 .02 .11 3 18																				
				.01	0	.01	.00	.00	0			.50		.17	0	.10		.05	4	10

INEXCO MALLARD YT O-18 010440 300 .50

							INEX	CO MA	LLARD YT	O-18 0	10440	300 .5	50						
DEPTH T	OC	PI	S1+S2	TMAX	S1	\$2	S 3	HI	OI	DEPTH	тос	PI	S1+S2	ΤΜΑΧ	S1	S 2	S 3	HI	OI
4520	1.30	1.00	.10	0	.10	.00	.12	0	9	6710	.71	.38	2.59	395	.99	1.60	.46	225	64
4550	.57	.82	.11	0	.09	.02	.08	3	14	6740	.55	.52	.46	377	.24	.22	.24	40	43
4580	.47	1.00	.07	0	.07	.00	.05	0	10	6770	.55	.42	.26	375	.11	.15	.09	27	16
4610	.84	.65	.20	331	.13	.07	.13	8	15	6800	.76	.53	.34	371	.18	.16	.08	21	10
4640	.69 1.02	1.00	.11	0	<u>.11</u> .09	.00.	.07	0	<u>10</u> 10	<u>6830</u> 6860	.25	.57 .25	.14	<u>337</u> 386	<u>.08</u> .15	.06	.07	24 125	27
-	1.07	.78	.36	0	.28	.08	.15	7	14	6890	1.59	.49	.37	376	.18	.19	.15	11	9
4730	.84	.68	.38	331	.26	.12	.18	14	21	6920	1.03	.48	.27	375	.13	.14	.12	13	11
4760	.65	1.00	.08	0	.08	.00	.10	0	15	6950	1.08	.66	7.00	375	4.61	2.39	.37	221	34
4790 4820	.98 .58	.93 .83	.15	<u>394</u> 0	.14	.01	.14 .15	1	14 25	<u>6980</u> 7010	.28	.32	.34	379 381	.11	.23	.11	82 64	<u>39</u> 16
4850	.39	.92	.12	0	.12	.02	.08	2	20	7040	.70	.34	1.11	383	.38	.73	.33	104	47
4880	.75	.86	.14	0	.12	.02	.12	2	16	7100	.53	.58	.38	358	.22	.16	.15	30	28
4910	.53	1.00	.06	0	.06	.00	.09	0	16	7130	.96	.60	.15	404	.09	.06	.20	6	20
<u>4940</u> 4970	.65 .37	<u>1.00</u> .63	.09	0 383	.09	.00	.09 .09	43	<u>13</u> 24	7160 7190	.30	.74	.34 .43	<u>304</u> 323	.25	.09	.14 .15	<u>30</u> 42	46 37
5000	.40	.03	.17	351	.12	.05	.08	12	20	7220	.40	.64	.59	349	.38	.21	.20	50	47
5030	.29	.85	.13	0	.11	.02	.07	6	24	7250	.25	.55	.49	424	.27	.22	.20	88	80
5060	.25	.74	.19	308	.14	.05	.09	20	36	7280	.27	.64	.36	312	.23	.13	.12	48	44
5090 5120	.43	.83 .78	.24	0	.20	.04	.21	<u>9</u> 21	<u>48</u> 34	7310 7340	.40	.62 .73	.45	<u>347</u> 309	.28	.17	.23	<u>42</u> 21	<u>57</u> 42
5150	.23	.70	.23	0	.10	.05	.00	17	39	7370	.30	.73	.50	390	.22	.08	.10	57	<u>42</u> 50
5180	.31	.86	.36	391	.31	.05	.21	16	67	7410	.38	.53	.55	389	.29	.26	.21	68	55
5210	.35	.80	.30	0	.24	.06	.11	17	31	7470	.26	.57	.47	387	.27	.20	.19	76	73
5240	.36	.77	.35	0	.27	.08	.10	22	27	7500	.17	.63	.32	351	.20	.12	.15	70	88
5270 5300	.37 .29	.71 .90	.48	0	.34	.14	.12	<u> </u>	<u>32</u> 27	7530 7550	.15	.43	.37	<u>447</u> 383	<u>.16</u> .15	.21	<u>.15</u> .15	140 68	100 93
5330	.21	.82	.20	301	.18	.04	.08	19	38	7590	.50	.68	.19	302	.13	.06	.14	12	27
5360	.39	.79	.29	0	.23	.06	.12	15	30	7620	.22	.65	.31	382	.20	.11	.13	50	59
5390	.29	.69	.51	343	.35	.16	.12	55	41	7660	.34	.63	.32	302	.20	.12	.11	35	32
5420 5450	.22	.88 .58	.17	0 340	.15 .15	.02	.07	9 33	<u>31</u> 24	7690 7710	.30	.67	.66 .94	<u>391</u> 451	.44	.22	.21	73 225	70 54
5480	.35	.69	.26	333	.18	.08	.07	22	19	7740	.28	.59	.37	388	.22	.15	.30	53	107
5510	.35	.70	.23	361	.16	.07	.11	19	31	7770	.44	.71	.31	0	.22	.09	.17	20	38
5540	.21	.75	.28	301	.21	.07	.09	33	42	7800	.20	.61	.28	362	.17	.11	.16	55	80
<u>5570</u> 5600	.38 .43	.92	.25	302 437	.23	.02	<u>.07</u> .11	<u>5</u> 97	<u>18</u> 25	7830 7870	.40	<u>.67</u> .70	.39	359 312	.26	.13 .06	.20	<u>32</u> 8	50 20
5630	.55	.50	.76	396	.38	.38	.21	69	38	7890	.31	.70	.17	311	.12	.05	.18	16	58
5660	.38	.63	.27	368	.17	.10	.10	26	26	7920	.28	.59	.27	332	.16	.11	.19	39	67
5690	.40	.56	.62	354	.35	.27	.12	67	30	7980	.35	.10	1.47	451	.15	1.32	.16	377	45
5720 5750	.54 .62	.41	<u>1.16</u> 1.17	<u>398</u> 414	.48	.68 .75	.56 .21	125 120	<u>103</u> 33	<u>8010</u> 8040	.17	<u>.69</u> .70	.32	446 359	.22	.10 .16	.22	58 50	<u>129</u> 118
5780	.02	.79	.38	0	.30	.08	.09	120	21	8070	.28	.70	.29	368	.21	.08	.11	28	39
5810	.39	.76	.49	310	.37	.12	.09	30	23	8100	.92	.80	.15	306	.12	.03	.10	3	10
5840	.58	.66	.32	302	.21	.11	.10	18	17	8130	.50	.89	.18	306	.16	.02	.08	4	16
5870 5900	.55 .37	.54 .75	.37	459 0	.20	.17	.11	<u> </u>	20 18	<u>8160</u> 8190	2.22 2.95	.67 .65	.12	312 356	.08	.04	.16	1	7
5930	.37	.63	.32	399	.24	.08	.07	38	23	8220	4.81	.03	9.30	436	.38	8.92	.23	185	7
5960	.48	.86	.29	0	.25	.04	.08	8	16	8250	3.83	.60	.10	442	.06	.04	.30	1	7
5990	.45	.67	.49	334	.33	.16	.11	35	24	8280	3.76	.54	.13	422	.07	.06	.41	1	10
	1.12 1.42	.56 1.00	<u>1.05</u> .12	<u>392</u> 0	.59	.46	.17 .13	<u>41</u> 0	<u>15</u> 9	<u>8310</u> 8340	4.16 2.98	<u>1.00</u> .50	.03	0 306	.03	.00	.25	0	6
-	2.32	1.00	.03	0	.03	.00	.20	0	8	8370	1.72	1.00	.05	0	.00	.00	.13	0	7
-	2.31	.80	.15	0	.12	.03	.17	1	7	8400	1.37	.86	.07	0	.06	.01	.13	0	9
6140	.72	.52	.93	395	.48	.45	.14	62	19	8430	2.26	.75	.04	0	.03	.01	.12	0	5
<u>6170</u> 6200	1.92 .89	.74	.31	355 335	.23	.08	<u>.18</u> .10	4	<u>9</u> 11	<u>8460</u> 8490	2.01 1.92	1.00	<u>.03</u> .01	0	.03	.00.	<u>.17</u> .14	0	8
	.89 1.28	.66	.35	355	.23	.12	.10	9	11	8520	2.66	.57	.01	341	.01	.00	.14	1	4
-	1.57	.64	.28	353	.18	.10	.15	6	9	8550	2.24	.60	.05	334	.03	.02	.16	0	7
	1.14	.72	.18	0	.13	.05	.10	4	8	8580	3.07	1.00	.04	0	.04	.00	.21	0	6
<u>6320</u> 6350	.79	.60 .81	.20	<u>397</u> 364	.12	.08	.13	<u>10</u> 11	<u>16</u> 23	<u>8610</u> 8640	3.18 3.39	1.00 .75	.03	0	.03	.00	.17	0	5
6380	.38	.77	.27	310	.22	.03	.07	18	18	8670	2.85	.00	.04	0	.00	.01	.15	0	5
6410	.37	.64	.36	0	.23	.13	.11	35	29	8700	2.98	.00	.01	0	.00	.01	.15	0	5
6440	.35	.62	.26	342	.16	.10	.12	28	34	8730	1.89	.00	.01	0	.00	.01	.11	0	5
6470	.34 .45	.62 .55	.29 .40	338 405	.18	<u>.11</u> .18	.10 .16	<u>32</u> 40	29	<u>8760</u> 8790	2.06	.54 1.00	.13	<u>354</u> 0	.07	.06	.16	2	7
<u>6500</u> 6530	.45	.55	1.40	395	.22	.18	.16	122	35 23	8790	2.74 2.79	.75	.02	307	.02	.00	.18	0	6 6
	1.03	.76	.33	371	.25	.08	.13	7	12	8850	3.01	.50	.02	0	.03	.01	.18	0	5
6590	.59	.47	.94	421	.44	.50	.20	84	33	8880	2.57	.05	.21	426	.01	.20	.15	7	5
6620	.58	.57	.65	388	.37	.28	.12	48	20	8910	1.31	.67	.06	432	.04	.02	.08	1	6
<u>6650</u> 6680	.27	.49	.61 .40	394 363	.30	.31 .07	.08 .05	<u>114</u> 31	29 22	8940 8970	1.05 1.31	<u>1.00</u> .75	.04	0	.04	.00	<u>.10</u> .11	0	<u>9</u> 8
		.05		505				5.				., 5			.00			<u> </u>	

							INEX	CO MAI	LARD YT	0-18
DEPTH	н тос	PI	S1+S2	ТМАХ	S1	S2	S 3	HI	OI	D
9000	.78	.78	.09	0	.07	.02	.09	2	11	9
9030	.57	.80	.05	422	.04	.01	.16	1	28	_ 9
9060	1.02	.76	.17	0	.13	.04	.18	3	17	9
9090	.35	.57	.07	302	.04	.03	.17	8	48	9
9120	.36	.54	.13	306	.07	.06	.16	16	44	999
9150	.48	.62	.21	323	.13	.08	.21	16	43	9
9180	.21	.57	.14	302	.08	.06	.20	28	95	10
9180	2.45	.01	1.20	414	.01	1.19	1.08	48	44	10
9210	.42	.58	.12	0	.07	.05	.15	11	35	10
9240	.77	.71	.24	0	.17	.07	.16	9	20	10
9270	.79	.73	.15	302	.11	.04	.22	5	27	10
9300	.70	.69	.16	382	.11	.05	.16	7	22	10
9330	.44	.78	.09	310	.07	.02	.14	4	31	10
9360	.62	.67	.03	312	.02	.01	.09	1	14	10
9390	.85	1.00	.04	0	.04	.00	.12	0	14	10
9420	.59	.75	.04	309	.03	.01	.09	1	15	10
9450	.25	.79	.42	320	.33	.09	.15	36	60	10
9480	9.25	.50	32.70	346	16.51	16.19	13.95	175	150	10
9510	.31	.46	.28	345	.13	.15	.91	48	293	10
9540	.29	.62	.29	353	.18	.11	.18	37	62	10
9570	.82	.73	.62	0	.45	.17	1.13	20	137	10
9600	.70	.69	.29	336	.20	.09	.24	12	34	
9660	.80	.48	.87	423	.42	.45	.27	56	33	Ju
9690	14.54	.35	51.02	344	17.77	33.25	29.73	228	204	Et
9720	.65	.58	.48	420	.28	.20	.33	30	50	Bl
9750	2.74	.67	.40	331	.27	.13	.38	4	13	Fo
9780	.71	.59	1.03	421	.61	.42	1.18	59	166	Fo
9810	.45	.55	.60	388	.33	.27	.34	60	75	1

NEXCO MALLARD YT O-18 010440 300 .50

DEPTH	тос	PI	S1+S2	ТМАХ	S1	S 2	\$3	н	OI
9840	.32	.64	.53	361	.34	.19	.26	59	81
9870	.29	.22	.81	436	.18	.63	.18	217	62
9900	.28	.58	.19	412	.11	.08	.15	28	53
9930	5.54	.34	28.88	438	9.73	19.15	7.89	345	142
9960	.37	.74	.31	387	.23	.08	.29	21	78
9990	.20	.73	.11	337	.08	.03	.21	15	105
10020	.21	.67	.15	311	.10	.05	.18	23	85
10050	.74	.42	.84	433	.35	.49	.87	66	117
10080	.23	.50	.18	361	.09	.09	.17	39	73
10110	.28	.55	.22	341	.12	.10	.16	35	57
10140	.13	.67	.12	0	.08	.04	.18	30	138
10170	.66	.79	.19	0	.15	.04	.14	6	21
10200	.54	.33	.45	439	.15	.30	.17	55	31
10230	.65	.68	.22	384	.15	.07	.18	10	27
10260	.29	.67	.12	312	.08	.04	.19	13	65
10290	.61	.36	1.15	437	.41	.74	.23	121	37
10320	.47	.63	.48	390	.30	.18	.37	38	78
10350	.45	.55	.42	423	.23	.19	.26	42	57
10380	.46	.66	.29	335	.19	.10	.18	21	39
10410	.32	.46	.35	429	.16	.19	.16	59	50
10440	.43	.60	.20	363	.12	.08	.14	18	32

Jungle Creek Fm	-15F
Ettrain Fm	-866
Blackie Fm	-1351
Ford Lake Sh	-3401
Ford Lake Sh	-8085

INEXCO HUSKY PORCU									PORCUPI	NE G-31	0 87	00 30	0.50						
DEPTH TO	ос	PI	\$1+\$2	ТМАХ	S1	\$2	S 3	н	OI	DEPTH	тос	PI	\$1+\$2	тмах	S1	S 2	S 3	н	OI
205 1.0	0.2	(1	1.00	276	67	40	1.07	41	104	2200	10	65	40	220	26	1.4	1 5	20	22
<u>30F 1.0</u> 60 1.5		.61 .71	1.09 .48	376 368	.67	.42	<u>1.27</u> .32	<u>41</u> 9	<u>124</u> 21	2280	.46 .64	.65 .63	.40	328 373	.26	.14 .41	.15 .17	30 64	32
90 1.5		.93	.27	309	.25	.02	.36	1	23	2340	.66	.64	1.79	378	1.14	.65	.30	98	45
-	75	.71	.41	0	.29	.12	1.20	16	160	2370	.70	.61	2.61	392	1.58	1.03	.42	147	59
150 .6	68	.88	.24	0	.21	.03	.34	4	50	2400	.55	.59	1.74	398	1.02	.72	.41	130	74
	73	.43	.88	416	.38	.50	.09	68	12	2430	.41	.68	.74	379	.50	.24	.23	58	56
-	59	.58	.76	375	.44	.32	.45	54	76	2460	.75	.72	2.18	382	1.57	.61	.29	81	38
-	65 63	.76 .69	.54	361 366	.41	.13 .21	.16	20 33	24	2490 2520	.78	.60 .49	<u>1.39</u> .45	<u> </u>	.83	.56	.26	71 85	<u>33</u> 62
	41	.77	.57	0	.44	.13	.10	31	24	2550	.40	.57	1.41	382	.80	.61	.26	152	65
-	68	.67	.61	323	.41	.20	.11	29	16	2580	.55	.61	1.91	376	1.16	.75	.40	136	72
	91	.75	.51	0	.38	.13	.10	14	10	2610	.54	.67	1.31	323	.88	.43	.19	79	35
-	83	.77	.52	0	.40	.12	.11	14	13	2640	.40	.72	1.03	0	.74	.29	.12	72	30
-	7 <u>3</u> 91	.73 .66	.49	0 367	<u>.36</u> .51	.13 .26	.56 .41	<u>17</u> 28	<u>76</u> 45	<u>2670</u> 2700	.42	.60 .55	<u>1.54</u> 1.48	<u>315</u> 387	<u>.93</u> .81	.61 .67	.20	145 145	<u>47</u> 50
480 1.3		.68	.72	362	.49	.20	.17	17	12	2820	.33	.59	1.21	364	.71	.50	.23	145	103
-	67	.68	.60	347	.41	.19	.11	28	16	2850	.48	.60	1.22	375	.73	.49	.25	102	52
540 .6	68	.63	.95	355	.60	.35	.16	51	23	2880	.68	.59	1.49	387	.88	.61	.30	89	44
-	82	.69	.90	0	.62	.28	.14	34	17	2910	.59	.60	1.86	374	1.11	.75	.58	127	98
600 1.0		.71	.89	315	.63	.26	.14	25	13	2940	.50	.61	1.32	379	.81	.51	.21	102	42
<u>630</u> 1.3 660 .8	34 86	.65 .67	.79 .48	366 368	.51	.28 .16	.13	20 18	<u> </u>	<u>2970</u> 3000	.43	.47 .58	.80 .91	384	<u>.38</u> .53	.42	.15	97 135	<u>34</u> 71
-	88	.65	.78	357	.52	.27	.14	30	18	3030	.33	.52	1.22	381	.64	.58	.20	175	63
720 1.0		.70	.77	355	.54	.23	.13	21	12	3060	.18	.60	.67	346	.40	.27	.17	150	94
-	93	.71	.80	355	.57	.23	.11	24	11	3090	.59	.64	.44	0	.28	.16	.10	27	16
-	88	.71	1.01	315	.72	.29	.13	32	14	3120	.34	.66	.41	0	.27	.14	.14	41	41
<u>810 1.0</u> 840 .8	02 81	.64 .66	.78 .90	<u>315</u> 0	.50 .59	.28 .31	<u>.26</u> .11	27 38	<u>25</u> 13	<u>3150</u> 3180	.27	.57 .54	.54	<u> </u>	.31 .49	.23 .41	.14	85 178	<u>51</u> 60
870 1.5		.64	1.02	367	.65	.37	.16	24	10	3210	.16	.61	.67	356	.41	.26	.14	162	75
-	94	.69	1.21	363	.84	.37	.13	39	13	3240	3.26	.68	.25	0	.17	.08	.32	2	9
-	54	.73	.67	383	.49	.18	.12	33	22	3270	2.29	.58	.26	320	.15	.11	.28	4	12
-	68	.64	3.62	391	2.33	1.29	.52	189	76	3300	.58	.55	.51	305	.28	.23	.16	39	27
	28 66	.63 .65	.86 1.20	0 367	.54	.32	.14	<u>114</u> 63	<u>50</u> 30	<u>3330</u> 3360	.34	.53 .50	.72	365 375	.38	.34	.18	100 43	52 40
-	69	.66	1.02	364	.67	.35	.13	50	18	3390	.23	.57	.74	360	.42	.20	.24	139	113
-	83	.67	1.32	364	.88	.44	.16	53	19	3420	.37	.58	1.06	339	.61	.45	.21	121	56
-	62	.64	1.60	365	1.03	.57	.18	91	29	3450	.25	.43	.37	342	.16	.21	.14	84	55
1140 1.6		.66	.85	369	.56	.29	.18	17	10	3480	.29	.54	.95	387	.51	.44	.18	151	62
<u>1170</u> 1.5 1200 .6	54 62	.73 .76	.73 3.68	329 354	.53 2.80	.20	.11	<u>12</u> 141	7	<u>3510</u> 3540	.55 .29	.64 .45	.87 .65	<u>312</u> 351	.56	.31 .36	.17 .21	56 124	<u>30</u> 72
-	42	.60	2.25	370	1.35	.00	.20	214	57	3570	.15	.52	.56	322	.29	.30	.11	180	73
-	59	.72	4.87	358	3.49	1.38	.31	233	52	3600	.37	.65	1.34	300	.87	.47	.21	127	56
	43	.70	3.47	367	2.42	1.05	.27	244	62	3630	.24	.75	1.68	311	1.26	.42	.18	175	75
-	35	.62	2.17	359	1.35	.82	.31	234	88	3660	.21	.61	.33	335	.20	.13	.08	61	38
	24 53	.65 .69	<u>1.28</u> 1.18	381 372	<u>.83</u> .81	.45	<u>.18</u> .18	<u>187</u> 69	<u>75</u> 33	<u>3690</u> 3720	.12	.60 .60	.30	<u>306</u> 303	.18	.12 .17	.05	100 121	<u>41</u> 57
1440 1.7		.60	.75	379	.45	.30	.31	16	17	3750	.14	1.00	.04	0	.04	.00	.00	0	58
-	71	.49	1.22	371	.60	.62	.24	87	33	3780	.58	1.00	.05	0	.05	.00	.06	0	10
-	38	.66	1.03	317	.68	.35	.16	92	42	3810	.35	.75	.24	303	.18	.06	.11	17	31
-	72	.59	.70	364	.41	.29	.24	40	33	3840	.41	.56	.45	335	.25	.20	.10	48	24
	<u>36</u> 49	.56 .58	2.58 2.21	375 382	1.45 1.28	<u>1.13</u> .93	.34	313 189	<u>94</u> 59	<u>3870</u> 3900	.58 .37	.50 .92	.42	<u>346</u> 0	.21 .12	.21 .01	.12 .08	<u>36</u> 2	20
1590 .4		.50	1.56	376	.94	.93	.29	55	29	3930	.37	.92	.13	0	.12	.01	.08	90	21
-	85	.69	1.67	373	1.15	.52	.31	61	36	3960	.01	1.00	.01	0	.01	.00	.04	0	400
-	49	.61	1.83	381	1.12	.71	.34	144	69	3990	.09	.00	.01	0	.00	.01	.03	11	33
-	50	.61	1.97	385	1.20	.77	.37	154	74	4020	.13	1.00	.07	0	.07	.00	.05	0	38
	80 63	.64 .61	4.45 2.90	401 394	2.83 1.78	1.62 1.12	.47	202 177	<u>58</u> 95	4050 4080	.20	.71 .89	.07	0	.05	.02	.06 .05	<u>10</u> 8	<u>30</u> 41
	56	.61	2.90	394	1.52	.97	.45	173	80	4080	.12	.79	.39	0	.00	.01	.03	36	36
-	55	.60	2.64	398	1.59	1.05	.38	190	69	4140	.10	1.00	.16	0	.16	.00	.08	0	80
-	54	.64	1.78	383	1.14	.64	.27	118	50	4170	.12	1.00	.16	0	.16	.00	.06	0	50
-	53	.63	1.87	366	1.17	.70	.31	132	58	4200	.74	.95	7.63	0	7.22	.41	.21	55	28
	43 50	.67 .66	<u>1.92</u> 1.89	385 382	<u>1.28</u> 1.24	.64 .65	.43	148 130	<u>100</u> 60	4230 4260	.16 .07	.84 .83	<u>.19</u> .06	0	.16 .05	.03 .01	.10 .07	<u>18</u> 14	<u>62</u> 100
	<u>50</u> 81	.66	4.17	368	3.18	.65	.30	122	44	4260	.07	.83	.06	446	.05	.01	.07	137	75
-	63	.63	2.58	381	1.63	.95	.41	150	65	4320	.16	.81	.26	420	.04	.05	.10	31	62
	55	.59	2.33	389	1.38	.95	.38	172	69	4350	.09	.79	.14	0	.11	.03	.12	33	133
-	43	.58	1.13	391	.65	.48	.27	111	62	4380	.09	.80	.15	0	.12	.03	.08	33	88
	54 57	.55	1.58	385	.87	.71	.27	131	50	4410	.08	.79	.19	0	.15	.04	.08	50	100
	57 38	.58 .61	2.31	381 380	<u>1.35</u> .91	.96 .57	.32	168 150	<u>56</u> 57	4440	.08	.67	.12	0	.08	.04	.08	50 70	100 70
-	45	.59	1.43	382	.84	.59	.22	131	57	4500	.08	1.00	.07	0	.07	.07	.07	0	62
	71	.55	.49	349	.27	.22	.25	30	35	4530	.14	.69	.16	0	.11	.05	.04	35	28
							-								-				

INEXCO HUSKY PORCUPINE G-31 0 8700 300 .50

INEXCO MALLARD YT O-18	010440 300 .50	
-------------------------------	----------------	--

						INEXC	U MAL	LAKD YI	O-18 010	0440 3	300 .50							
DEPTH TOC	PI	\$1+\$2	TMAX	S1	S2	\$3	н	OI	DEPTH	ГОС	PI S	51+S2	ТМАХ	S1	S2	\$3	HI	OI
4560 .13	.68	.19	0	.13	.06	.08	46	61	6750	.04	.67	.03	0	.02	.01	.58	251	450
4590 .07	1.00	.05	0	.05	.00	.05	0	71	6780	.06	.81	.43	337	.35	.08	.44	133	733
4620 .09	1.00		0	.06	.00	.03	0	33	6810	.13	.66	.80	358	.53	.27	.58	207	446
4650 .10	.82	.17	0	.14	.03	.05	30	50	6840	.02	1.00	.07	0	.07	.00	.44	0	2200
4680 .11	.72	.18		.13	.05	.08	45	72	6870	.01	1.00	.05	0	.05	.00	.11	0	1100
4710 .10	.80			.08	.02	.04	20	40	6900	.01	1.00	.03	0	.03	.00	.05	0	500
4740 .09	1.00	.05		.05	.00	.04	0	44	6930	.01	1.00	.02	0	.02	.00	.09	0	900
4770 .07	1.00	.03	0	.03	.00	.04	0	57	6960	.01	1.00	.02	0	.02	.00	.03	0	300
<u>4800 .11</u> 4830 .15	<u>1.00</u> .81	.06		.06	.00	<u>.06</u> .10	0 33	<u>54</u> 66	<u>6990</u> 7020	.01	1.00	<u>.01</u> .11	0	<u>.01</u> .11	.00	.02	0	<u>200</u> 1800
4860 .10	1.00	.10		.10	.03	.08	0	80	7020	.02	1.00	.01	0	.01	.00	.30	0	800
4870 .04	1.00	.04		.04	.00	.08	0	125	7030	.01	1.00	.01	0	.01	.00	.08	0	400
4920 .11	.91	.23	0	.21	.00	.16	18	145	7110	.01	.89	.03	0	.03	.00	.10	100	1000
4950 .12	1.00	.19		.19	.00	.09	0	75	7140	.01	.94	.16	0	.15	.01	.09	100	900
4980 .07	1.00			.18	.00	.06	0	85	7170	.05	.95	.57	0	.54	.03	.15	60	300
5010 .07	1.00	.14		.14	.00	.06	0	85	7200	.01	1.00	.10	0	.10	.00	.10	0	1000
5040 .12	1.00	.05	-	.05	.00	.04	0	33	7230	.01	1.00	.02	0	.02	.00	.03	0	300
5070 .04	1.00			.04	.00	.07	0	174	7260	.02	1.00	.05	0	.05	.00	.05	0	250
5100 .05	1.00	.22	-	.22	.00	.07	0	140	7290	.09	.94	.18	368	.17	.01	.51	11	566
5130 .08	1.00	.21	0	.21	.00	.08	0	100	7320	.03	1.00	.03	0	.03	.00	.07	0	233
5160 .11	.88			.22	.03	.38	27	345	7350	.05	1.00	.06	0	.06	.00	.15	0	300
5190 .19	1.00	.11	0	.11	.00	.09	0	47	7380	.02	1.00	.03	0	.03	.00	.05	0	250
5220 .13	1.00	.16	0	.16	.00	.05	0	38	7410	.25	.74	1.73	413	1.28	.45	.27	180	108
5250 .21	.87	.45		.39	.06	.19	28	90	7440	.01	1.00	.01	0	.01	.00	.05	0	500
5280 .05	1.00		0	.02	.00	.04	0	80	7470	.04	1.00	.14	0	.14	.00	.09	0	225
5310 .06	1.00	.06	0	.06	.00	.03	0	50	7500	3.08	.40	4.55	451	1.82	2.73	.31	88	10
5340 .07	1.00	.10	0	.10	.00	.06	0	85	7530	.01	1.00	.05	0	.05	.00	.06	0	600
5370 .10	1.00	.04	0	.04	.00	.02	0	20	7560	.03	1.00	.05	0	.05	.00	.05	0	166
5400 .13	1.00	.08	0	.08	.00	.03	0	23	7590	.01	1.00	.01	0	.01	.00	.03	0	300
5430 .14	1.00	.25	0	.25	.00	.23	0	164	7620	.01	1.00	.04	0	.04	.00	.07	0	699
5460 .18	.65	.52	380	.34	.18	.55	100	305	7650	.01	1.00	.03	0	.03	.00	.12	0	1200
5490 .12	1.00	.14	0	.14	.00	.11	0	91	7710	.01	1.00	.01	0	.01	.00	.05	0	500
5520 .04	1.00		0	.07	.00	.05	0	125	7740	.01	.00	.01	0	.00	.01	.03	100	300
5550 .15	1.00	.11	0	.11	.00	.08	0	53	7770	.01	1.00	.01	0	.01	.00	.02	0	200
5580 .05	1.00	.05	0	.05	.00	.04	0	80	7800	.04	1.00	.02	0	.02	.00	.10	0	250
5610 .14	.00		0	.00	.01	.12	7	85	7830	.01	1.00	.02	0	.02	.00	.05	0	500
5640 .09	.87	.08	0	.07	.01	.05	11	55	7860	.01	1.00	.02	0	.02	.00	.04	0	400
5670 .01	1.00	.01	0	.01	.00	.06	0	600	7890	.01	1.00	.03	0	.03	.00	.07	0	699
5700 .01	1.00	.02	0	.02	.00	.02	0	200	7920	.01	1.00	.02	0	.02	.00	.04	0	400
5730 .01	1.00	.08		.08	.00	.02	0	200	7950	.04	.95	.43	0	.41	.02	.15	50	375
5760 .09	1.00	.07	0	.07	.00	.04	0	44	7980	.01	1.00	.02	0	.02	.00	.03	0	300
5790 .01	1.00		0	.05	.00	.05	0	500	8010	.02	1.00	.02	0	.02	.00	.04	0	200
5820 .01	1.00	.02	0	.02	.00	.08	0	800	8040	.03	1.00	.11	0	.11	.00	.07	0	233
5850 .07	.69	.55	0	.38	.17	.17	242	242	8070	.04	1.00	.02	0	.02	.00	.03	0	75
5880 .01	.00		0	.00	.01	.08	100	800	8100	2.41	.05	1.13	412	.06	1.07	1.07	44	44
5910 .06	1.00	.05	0	.05	.00	.08	0	133	8130	.06	.75	.04	365	.03	.01	.04	16	66
5940 .06	1.00	.05	0	.05	.00	.05	0	83	8160	.15	.80	.05	0	.04	.01	.05	6	33
5970 .12	.83 1.00	<u>.06</u> .05	0	.05 .05	.01	.06	8	91	8190	.10	.77	.30	326	.23	.07	.15	70 16	150
<u>6000</u> .03 6030.01								200 300	8220		.92	.09	0	.11		.41	100	683
	<u>1.00</u> .92			.04	.00	.03	0	740	8250	.03	.67	.09	0	.06 .03	.03 .01	.05		166
<u>6060</u> .05 6090.07	.92			.23	.02	.57	40	957	8280 8310	<u>.01</u> .01	.50	.04	0	.03	.01	.04	100 200	400 200
6120 .16	.44			.10	.09	.07	31	937	8340	.01	.30	.04	0	.02	.02	.02	100	400
6150 .22	.73			.51	.05	.64	86	290	8370	.01	.40	.05	0	.04	.01	.04	300	400
6180 .82	.66		332	2.00	1.01	2.43	123	296	8400	.01	.00	.03	0	.02	.03	.04	100	100
6210 .02	.89			.08	.01	.34	501	700	8430	.01	1.00	.03	0	.03	.00	.01	0	100
6240 .13	.81	.54		.44	.10	.75	76	576	8460	.01	1.00	.04	0	.04	.00	.03	0	300
6270 .52	.72			.98	.38	.98	73	188	8490	.01	1.00	.01	0	.01	.00	.01	0	100
6300 .04	.50			.05	.05	.27	125	675	8520	.01	.00	.01	0	.00	.01	.01	100	100
6330 .04	.87			.07	.01	.33	25	825	8550	2.41	.03	1.20	415	.04	1.16	1.00	48	41
6360 .03	1.00			.08	.00	.14	0	466	8580	.01	1.00	.04	0	.04	.00	.08	0	800
6390 .01	1.00			.08	.00	.13	0	1300	8610	.01	1.00	.01	0	.01	.00	.03	0	300
6420 .02	.85			.11	.02	.26	100	1300	8640	.01	1.00	.05	0	.05	.00	.02	0	200
6450 .08	.95			.19	.01	.16	12	200	8670	.09	.68	.41	347	.28	.13	.69	144	766
6480 .13	.73			.72	.26	.60	200	461	8700	2.52	.03	1.25	416	.04	1.21	1.01	48	40
6510 .03	.59			.10	.07	.48	233	1600										
6540 .01	.87			.07	.01	.11	100	1100	Devoni	an		-13	5F					
6570 .03	1.00	.08	0	.08	.00	.10	0	333	Ogilvie	/Road	R.	-319	98					
6600 .01	1.00	.01	0	.01	.00	.06	0	600	Arnica	Fm		-409	93					
6630 .02	1.00	.15	0	.15	.00	.10	0	500	Ronnin			-546	51					
6660 .45	.38			.82	1.31	1.59	291	353	Franklir		n	-572						
6690 .11	.31			.12	.27	1.01	245	918	Protero	zoic		-828	34					
6720 .08	.83	.46	392	.38	.08	.60	100	750										

APPENDIX 2

INPUT DATA FOR KANDIK HYDROCARBON ASSESSMENTS

The following tables present the probability distributions of reservoir parameters, number of prospects, and marginal probabilities of geological risk factors used as input for the various conceptual statistical analyses discussed in this paper. These estimates are based on subjective opinion, partly constrained by reservoir data and information from analogous hydrocarbon-bearing basins.

1. KANDIK TERTIARY/UPPER CRETACEOUS NON-MARINE OIL PLAY

Table II.1a. Probability distributions of reservoir parameters

Geological variable	Unit of measurement	Probability in upper percentiles 1.00	Probability in upper percentiles 0.50	Probability in upper percentiles 0.01	Probability in upper percentiles 0.00	
Area of closure	km ²	0.5	7	21	40	_
Reservoir thickness	m	1	6	10	20	
Porosity	decimal fraction	0.05	0.12	0.22	0.25	
Trap fill	decimal fraction	0.05	0.25	0.9	1.00	
Oil saturation	decimal fraction	0.5	0.65	0.75	0.8	
Shrinkage factor	decimal fraction	1.137	1.137	1.137	1.137	

Table II.1b. Marginal probabilities of geological risk factors

Geological factors	Marginal probability	Play level	Prospect level	
Presence of closure	0.8		х	
Presence of reservoir facies	1.00		х	
Adequate seal	0.7		х	
Adequate timing	0.75		х	
Adequate source	0.9		х	

Table II.1c. Probability distribution for number of prospects

Geological variable	Probability in upper percentiles 0.99	Probability in upper percentiles 0.5	Probability in upper percentiles 0.00	
Number of prospects	14	50	200	

2. KANDIK TERTIARY/UPPER CRETACEOUS NON-MARINE GAS PLAY

Table II.2a. Probability distributions of reservoir parameters

Geological variable	Unit of measurement	Probability in upper percentiles 1.00	Probability in upper percentiles 0.50	Probability in upper percentiles 0.01	Probability in upper percentiles 0.00	
Area of closure	km ²	0.5	7	21	40	
Reservoir thickness	m	1	6	10	20	
Porosity	decimal fraction	0.05	0.12	0.22	0.25	
Trap fill	decimal fraction	0.05	0.25	0.9	1.00	
Gas saturation	decimal fraction	0.5	0.65	0.75	0.8	
Formation volume factor	decimal fraction	0.002	0.004	0.009	0.01	

Table II.2b. Marginal probabilities of geological risk factors

Geological factors	Marginal probability	Play level	Prospect level	
Presence of closure	0.8		Х	
Presence of reservoir facies	1.00		х	
Adequate seal	0.7		х	
Adequate timing	0.75		х	
Adequate source	0.9		Х	

Table II.2c. Probability distribution for number of prospects

Geological variable	Probability in upper percentiles 0.99	Probability in upper percentiles 0.5	Probability in upper percentiles 0.00	
Number of prospects	14	50	200	

3. KANDIK MESOZOIC MARINE STRUCTURAL PLAY

Geological variable	Unit of measurement	Probability in upper percentiles 1.00	Probability in upper percentiles 0.50	Probability in upper percentiles 0.01	Probability in upper percentiles 0.00	
Area of closure	km ²	0.5	9	75	80	
Reservoir thickness	m	30	40	55	70	
Porosity	decimal fraction	0.05	0.06	0.2	0.25	
Trap fill	decimal fraction	0.05	0.25	0.9	1	
Gas saturation	decimal fraction	0.7	0.75	0.85	0.9	
Formation volume factor	decimal fraction	0.002	0.004	0.009	0.01	

Table II.3a. Probability distributions of reservoir parameters

Table II.3b. Marginal probabilities of geological risk factors

Geological factors	Marginal probability	Play level	Prospect level	
Presence of closure	0.5		Х	
Presence of reservoir facies	0.5		х	
Adequate seal	0.4		х	
Adequate timing	0.75		х	
Adequate source	0.8		Х	

Table II.3c. Probability distribution for number of prospects

Geological variable	Probability in upper percentiles 0.99	Probability in upper percentiles 0.5	Probability in upper percentiles 0.00
Number of prospects	30	120	270

4. KANDIK PALEOZOIC MARINE STRUCTURAL OIL PLAY

Table II.4a. Probability distributions of reservoir parameters

Geological variable	Unit of measurement	Probability in upper percentiles 1.00	Probability in upper percentiles 0.50	Probability in upper percentiles 0.01	Probability in upper percentiles 0.00	
Area of closure	km ²	0.5	9	75	80	
Reservoir thickness	m	60	80	110	150	
Porosity	decimal fraction	0.015	0.04	0.12	0.2	
Trap fill	decimal fraction	0.05	0.25	0.9	1.00	
Oil saturation	decimal fraction	0.7	0.75	0.85	0.9	
Shrinkage factor	decimal fraction	1.137	1.137	1.137	1.137	

Table II.4b. Marginal probabilities of geological risk factors

Geological factors	Marginal probability	Play level	Prospect level	
Presence of closure	0.5		Х	
Presence of reservoir facies	0.3		Х	
Adequate seal	0.75		Х	
Adequate timing	0.5		Х	
Adequate source	0.7		Х	

Table II.4c. Probability distribution for number of prospects

Geological variable	Probability in upper percentiles 0.99	Probability in upper percentiles 0.5	Probability in upper percentiles 0.00	
Number of prospects	12	60	130	

5. KANDIK PALEOZOIC MARINE STRUCTURAL GAS PLAY

vGeological variable	Unit of measurement	Probability in upper percentiles 1.00	Probability in upper percentiles 0.50	Probability in upper percentiles 0.01	Probability in upper percentiles 0.00	
Area of closure	km ²	0.5	9	75	80	
Reservoir thickness	m	60	80	110	150	
Porosity	decimal fraction	0.015	0.04	0.12	0.2	
Trap fill	decimal fraction	0.05	0.25	0.9	1.00	
Gas saturation	decimal fraction	0.7	0.75	0.85	0.9	
Formation volume factor	decimal fraction	0.0024	0.0042	0.019	0.02	

Table II.5a. Probability distributions of reservoir parameters

Table II.5b. Marginal probabilities of geological risk factors

Geological factors	Marginal probability	Play level	Prospect level	
Presence of closure	0.5		х	
Presence of reservoir facies	0.3		Х	
Adequate seal	0.75		Х	
Adequate timing	0.5		Х	
Adequate source	0.7		Х	

Table II.5c. Probability distribution for number of prospects

Geological variable	Probability in upper percentiles 0.99	Probability in upper percentiles 0.5	Probability in upper percentiles 0.00
Number of prospects	45	220	500

APPENDIX 3

OUTPUT DATA FOR KANDIK HYDROCARBON ASSESSMENTS

The following text presents the output generated by the PETRIMES hydrocarbon assessment program using the conceptual play analysis procedure. For each play, the MPRO, PSRK and PSUM modules are presented. MPRO generates the number of pools distribution and risks for the play. PSRK gives the individual pool sizes by rank and PSUM indicates the Monte Carlo simulation for the pool size distribution. (Note: In text, field sizes are indicated rather than pools. In frontier conceptual plays, insufficient geological and engineering information is available to define individual pool accumulations in single structures). PSUM modules for total oil and gas potential on a basin-scale are also presented.

PETRIMES MODULE MPRO

Number of pools distribution and risks

UAI C5019902
PLAY Tertiary/Upper Cretaceous Nonmarine Oil
Assessor Peter Hannigan
Geologist Peter Hannigan
Remarks Kandik Assessment Project
Run date Mon., Feb. 8, 1999, 11:43 a.m.

User supplied parameters

Do you want to store on DB?	>	Y
Oil (o) or gas (g)?	>	0

A) Risks

	Geological factor		Marginal probability
Play level	Overall play level risk	=	1.00
Prospect level	Presence of closure	(1)	.80
	Presence of reservoir facies	(2)	1.00
	Adequate seal	(4)	.70
	Adequate timing	(5)	.75
	Adequate source	(6)	.90
	Overall prospect level risk	=	.38
Exploration risk		=	.38

B) Number of prospects distribution

Minimum	=	14		
Maximum	=	200		
Mean	=	78.82		
S.D.	=	56.33		

Frequency Number of prospects 99.00......14 95......17

JJ	
90	21
80	
75	
60	
50	50
40	80
25	
20	140
10	170
5	
1	197
0	200

C) Number of pools distribution

Minimum	=	0
Maximum	=	102
Mean	=	29.79
S.D.	=	21.72

 Frequency
 Number of pools

 100.00
 0

 99
 4

 95
 6

 90
 8

 80
 10

 75
 12

 60
 16

 50
 21

 40
 30

5.....71

1.....80

0......102

Note: The number of pools distribution is saved in the database with UDI= 6201OB4

PETRIMES MODULE PSRK

Individual pool sizes by rank where n is a random variable

UAI	C5019902
PLAY	Tertiary/Upper Cretaceous Nonmarine Oil
Assessor	Peter Hannigan
Geologist	Peter Hannigan
Remarks	Kandik Assessment Project
Run date	Mon., Feb. 8, 1999, 11:44 a.m.

User supplied parameters

Do you want to store on DB?	>	Y	
Do you want to use MPRO output?	>	Y	
Min. and max. pool ranks?	>	1	71
Do you use lognornal assumption?	>	Y	
Do you want to use ppsd output?	>	Y	

A) Basic information

Type of resource	=	oil in-place
System of measurement	=	S.I.
Unit of measurement	=	M cu m (19)

B) Lognormal pool size distribution

0							
Summary	mu	=	71278E-01	MEAN =	1.1975		
Statistics	sig. sq.	=	.50305	S.D. =	.96825		
Upper percentiles	99.99%	=	.66602E-01	60.00% =	.77805	15.00% =	1.9422
	99.00%	=	.17884	55.00% =	.85180	10.00% =	2.3110
	95.00%	=	.28999	50.00% =	.93120	8.00% =	2.5226
	90.00%	=	.37522	45.00% =	1.0180	6.00% =	2.8052
	85.00%	=	.44647	40.00% =	1.1145	5.00% =	2.9902
	80.00%	=	.51263	35.00% =	1.2239	4.00% =	3.2233
	75.00%	=	.57714	30.00% =	1.3507	2.00% =	3.9963
	70.00%	=	.64197	25.00% =	1.5025	1.00% =	4.8487
	65.00%	=	.70852	20.00% =	1.6916	.01% =	13.020

C) Number of pools distribution

Lower support	=	0
Upper support	=	102
Expectation	=	29.79
Standard Deviation	=	21.72

D) Pool sizes by rank

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Distribution			Distribution		Pool rank
		99996	$P(N \ge r) =$		3 9393	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. ,			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. ,			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
3 MEAN = 2.2782 S.D. = 93087 $P(N>=r)$ = 99770 99% = 58064 75% = 1.5681 10% = 3.5087 99% = .1714 S.D. = .64413 10% = 99% = .1391 25% = 2.8957 1% = 4.7259 99% = .14320 25% = 1.4844 1% = 99% = .39116 P(N>=r) = .99225 17 F = .33145 99% = .3162 50% = 1.1384 1% = 99% = .3215 25% = 1.9081 5% = 3.3345 99% = .10565 5.75% = .04076 P(N>=r) = 99% = .3221 75% = 1.1520 10% = 2.7890 99% = .1912 75% = .14066 5.0 = .1912 5% = 99% = .06413 0.0% = 2.3250 1% = 3.0577 99% = .1912 75% = .71439 10% = 99% = .30060 75% = 1.0258 10% = 2.5733 99% = .92655 .90% = .10212 5% = 90% = .10247						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. ,			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · ·		. ,			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · ·		. ,			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. ,			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
7MEAN 1.4882 S.D. e $.68123$ $P(N>=r)$ $P($						
99% = .2695075% = .9326110% =2.404799% = .1965975% = .7322410% =95% = .4706450% = 1.43965% =2.617899% = .3321650% = 1.05315% =90% = .6199125% = 2.01881% =3.023690% = .4481625% = 1.29681% =99% = .2497575% = .64739P(N>=r) =.9037490% = .4481625% = 1.29681% =99% = .2497575% = .8623510% =2.267599% = .2006975% = .7316710% =95% = .4320250% = 1.35775% =2.461895% = .3413750% = 1.03175% =90% = .5691625% = 1.91151% =2.827490% = .4605525% = 1.26401% =99% = .2366675% = .8078010% =2.152599% = .2048975% = .7256810% =99% = .2553755% = 1.29695% =2.331299% = .2048975% = .7256810% =99% = .2255375% = .59115P(N>=r) =.8340123MAN = .95050S.D. =.33213P(N>=r) =99% = .2167575% = 1.74651% =2.526990% = .4722325% = 1.20041% =99% = .2167975% = .7301410% =1.967399% = .2105575% = .7026710% =99% = .2105575% = .3643350% =1.21795% =2.121995% = .3571450% = .961655% =						-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			()			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
8MEAN = 1.3984 S.D. = $.64739$ P(N>=r) = $.90374$ 21MEAN = $.99031$ S.D. = $.36192$ P(N>=r) =99% = $.24975$ 75% = $.86235$ 10% = 2.2675 99% = $.20069$ 75% = $.73167$ 10% =95% = $.43202$ 50% = 1.3577 5% = 2.4618 95% = $.34137$ 50% = 1.0317 5% =90% = $.56916$ 25% = 1.9115 1% = 2.8274 90% = $.46055$ 25% = 1.2640 1% =9MEAN = 1.3270 S.D. = $.61764$ P(N>=r) = $.86946$ 95% = $.20489$ 75% = $.72568$ 10% =99% = $.23606$ 75% = 1.2969 5% = 2.3312 99% = $.20489$ 75% = $.72568$ 10% =95% = $.40412$ 50% = 1.2969 5% = 2.3312 95% = $.34961$ 50% = 1.0090 5% =90% = $.53111$ 25% = 1.8225 1% = 2.6649 90% = $.20838$ 25% = 1.2320 1% =90% = $.22553$ 75% = $.76449$ 10% = 2.0537 99% = $.20838$ 75% = $.71557$ 10% =99% = $.36322$ 50% = 1.7465 1% = 2.5269 90% = $.35513$ 50% = $.98550$ 5% =90% = $.50900$ 25% = 1.7465 1% = 2.5269 90% = $.47223$ 25% = 1.2004 1% =90% = $.21679$ 75% = $.73014$ 10% = 1.9673 99% = $.21055$ 75% = $.70267$ 10% =95% = $.36433$ 50% = 1.2179 5% = 2.1219 95% = $.35714$ 50% = $.96165$ 5% =						
99% = .24975 $75% = .86235$ $10% = 2.2675$ $99% = .2069$ $75% = .73167$ $10% = 1.0% = 1.0%$ $95% = .43202$ $50% = 1.3577$ $5% = 2.4618$ $95% = .34137$ $50% = 1.0317$ $5% = 1.0317$ $90% = .56916$ $25% = 1.9115$ $1% = 2.8274$ $90% = .36055$ $25% = 1.2640$ $1% = 2.2675$ $99% = .2069$ $75% = .372568$ $10% = 2.1525$ $90% = .46055$ $25% = 1.2640$ $1% = 2.2676$ $99% = .20489$ $75% = .72568$ $10% = 2.1525$ $99% = .20489$ $75% = .72568$ $10% = 2.20489$ $90% = .53111$ $25% = 1.22969$ $5% = 2.3312$ $95% = .34961$ $50% = 1.0090$ $5% = 2.2320$ $90% = .53111$ $25% = 1.8225$ $1% = 2.6649$ $90% = .46898$ $25% = 1.2320$ $1% = 2.2320$ $90% = .22553$ $75% = .76449$ $10% = 2.0537$ $99% = .20838$ $75% = .71557$ $10% = 2.23838$ $90% = .50090$ $25% = 1.7465$ $1% = 2.5269$ $90% = .35513$ $50% = .98550$ $5% = 2.2194$ $90% = .21679$ $75% = .73014$ $10% = 1.9673$ $99% = .21055$ $75% = .70267$ $10% = 2.21055$ $90% = .21679$ $75% = .73014$ $10% = 1.2179$ $95% = .35714$ $50% = .96165$ $5% = .96165$	44816 25% = 1.2968 1% = 1.7470	3.0236	1% =	25% = 2.0188	.61991	90% =
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. ,			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
9MEAN=1.3270S.D.= $.61764$ P(N>=r)= $.86946$ 99%= $.23606$ 75%= $.80780$ 10% = 2.1525 99% = $.20489$ 75% = $.34601$ P(N>=r)=95%= $.40412$ 50% = 1.2969 5% = 2.3312 95% = $.20489$ 75% = $.72568$ 10% =90%= $.53111$ 25% = 1.8225 1% = 2.6649 90% = $.46898$ 25% = 1.2320 1% =10MEAN= 1.2685 S.D.= $.59115$ $P(N>=r)$ = $.83401$ 23 MEAN $.95050$ S.D.= $.33213$ $P(N>=r)$ =99%= $.22553$ 75% = $.76449$ 10% = 2.0537 99% $.20838$ 75% = $.71557$ 10% =95%= $.38232$ 50% = 1.2517 5% = 2.2194 95% $.35513$ 50% = $.98550$ 5% =90%= $.50090$ 25% = 1.7465 1% 2.5269 90% $.47223$ 25% = 1.2004 1% =11MEAN= $.21679$ 75% = $.73014$ 10% = $.99\%$ $.21055$ 75% = $.70267$ 10% 95%= $.36433$ 50% <td< td=""><td></td><td>2.4618</td><td>5% =</td><td>50% = 1.3577</td><td>.43202</td><td>95% =</td></td<>		2.4618	5% =	50% = 1.3577	.43202	95% =
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.8274		25% = 1.9115		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	97103 S.D. = $.34601$ P(N>=r) = $.48762$.86946	P(N>=r) =		1.3270	9 MEAN =
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.1525				
10 MEAN = 1.2685S.D. = .59115 $P(N>=r) =$.8340123 MEAN = .95050S.D. = .33213 $P(N>=r) =$ 99% = .2255375% = .7644910% =2.053799% = .2083875% = .7155710% =95% = .3823250% = 1.25175% =2.219495% = .3551350% = .985505% =90% = .5009025% = 1.74651% =2.526990% = .4722325% =1.20041% =11 MEAN = 1.2200S.D. = .56717 $P(N>=r) =$.7982399% = .2105575% = .7026710% =99% = .2167975% = .7301410% =1.967399% = .2105575% = .7026710% =95% = .3643350% =1.21795% =2.121995% = .3571450% = .961655% =		2.3312	5% =	50% = 1.2969		
99% = .22553 $75% = .76449$ $10% =$ 2.0537 $99% = .20838$ $75% =$ $.71557$ $10% =$ $95% = .38232$ $50% =$ 1.2517 $5% =$ 2.2194 $95% = .35513$ $50% =$ $.98550$ $5% =$ $90% = .50090$ $25% =$ 1.7465 $1% =$ 2.5269 $90% = .47223$ $25% =$ 1.2004 $1% =$ 11 MEAN = 1.2200 S.D. = $.56717$ $P(N>=r) =$ $.79823$ 24 MEAN = $.92912$ S.D. = $.32008$ $P(N>=r) =$ $99% = .21679$ $75% =$ $.73014$ $10% =$ 1.9673 $99% =$ $.21055$ $75% =$ $.70267$ $10% =$ $95% =$ $.36433$ $50% =$ 1.2179 $5% =$ 2.1219 $95% =$ $.35714$ $50% =$ $.96165$ $5% =$		2.6649	1% =	25% = 1.8225		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	95050 S.D. = $.33213$ P(N>=r) = $.47400$.83401	P(N>=r) =	S.D. = .59115	1.2685	10 MEAN =
90% = .50090 25% = 1.7465 1% = 2.5269 90% = .47223 25% = 1.2004 1% = 11 MEAN = 1.2200 S.D. = .56717 P(N>=r) = .79823 24 MEAN = .92912 S.D. = .32008 P(N>=r) = 99% = .21679 75% = .73014 10% = 1.9673 99% = .21055 75% = .70267 10% = 95% = .36433 50% = 1.2179 5% = 2.1219 95% = .35714 50% = .96165 5% =		2.0537	10% =	75% = .76449	.22553	99% =
11 MEAN = 1.2200 S.D. = .56717 P(N>=r) = .79823 24 MEAN = .92912 S.D. = .32008 P(N>=r) = 99% = .21679 75% = .73014 10% = 1.9673 99% = .21055 75% = .70267 10% = 95% = .36433 50% = 1.2179 5% = 2.1219 95% = .35714 50% = .96165 5% =						
99% = .21679 75% = .73014 10% = 1.9673 99% = .21055 75% = .70267 10% = 95% = .36433 50% = 1.2179 5% = 2.1219 95% = .35714 50% = .96165 5% =	47223 25% = 1.2004 1% = 1.6051	2.5269	1% =	25% = 1.7465	.50090	90% =
95% = .36433 50% = 1.2179 5% = 2.1219 95% = .35714 50% = .96165 5% =	92912 S.D. = $.32008$ P(N>=r) = $.46211$.79823	P(N>=r) =	S.D. = .56717	1.2200	11 MEAN =
	21055 75% = .70267 10% = 1.3231	1.9673	10% =	75% = .73014	.21679	99% =
	35714 50% = .96165 5% = 1.4078	2.1219	5% =	50% = 1.2179	.36433	95% =
90% = .47604 25% = 1.6803 1% = 2.4075 90% = .47074 25% = 1.1696 1% =	47074 25% = 1.1696 1% = 1.5623	2.4075	1% =	25% = 1.6803	.47604	90% =
12 MEAN = 1.1794 S.D. = .54494 P(N>=r) = .76252 25 MEAN = .90738 S.D. = .30954 P(N>=r) =	90738 S.D. = $.30954$ P(N>=r) = $.45145$.76252	P(N>=r) =	S.D. = .54494	1.1794	12 MEAN =
99% = .20934 75% = .70389 10% = 1.8907 99% = .21113 75% = .68810 10% =	21113 75% = .68810 10% = 1.2890	1.8907	10% =	75% = .70389	.20934	99% =
95% = .34925 50% = 1.1921 5% = 2.0356 95% = .35595 50% = .93789 5% =	35595 50% = .93789 5% = 1.3714	2.0356	5% =	50% = 1.1921	.34925	95% =
90% = .45551 25% = 1.6218 1% = 2.3025 90% = .46576 25% = 1.1397 1% =	46576 25% = 1.1397 1% = 1.5215	2.3025	1% =	25% = 1.6218	.45551	90% =
13 MEAN = 1.1456 S.D. = .52378 P(N>=r) = .72713 26 MEAN = .88567 S.D. = .30016 P(N>=r) =	88567 S.D. = $.30016$ P(N>=r) = $.44160$.72713	P(N>=r) =	S.D. = .52378	1.1456	13 MEAN =
99% = .20303 75% = .68576 10% = 1.8221 99% = .21031 75% = .67272 10% =	21031 75% = .67272 10% = 1.2562	1.8221	10% =	75% = .68576	.20303	99% =
95% = .33681 50% = 1.1718 5% = 1.9585 95% = .35238 50% = .91452 5% =	35238 50% = .91452 5% = 1.3363	1.9585	5% =	50% = 1.1718	.33681	95% =
90% = .43903 25% = 1.5695 1% = 2.2092 90% = .45855 25% = 1.1108 1% =			10/	259/ - 15605	42002	0.00/

Pool rank	Distribution			Pool rank	Distribution		
27 MEAN = .86433	S.D. = .29162	P(N>=r) =	.43225	40 MEAN = .64167	S.D. = .21053	P(N>=r) =	.31728
99% = .20847	75% = .65714	10% =	1.2246	99% = .17346	75% = .49119	10% =	.90575
95% = .34734	50% = .89172	5% =	1.3026	95% = .27558	50% = .65667	5% =	.96574
90% = .45013	25% = 1.0829	1% =	1.4443	90% = .34782	25% = .79753	1% =	1.0733
28 MEAN = .84354	S.D. = .28371	P(N>=r) =	.42318	41 MEAN = .62789	S.D. = .20558	P(N>=r) =	.30846
99% = .20599	75% = .64172	10% =	1.1944	99% = .17111	75% = .48095	10% =	.88613
95% = .34152	50% = .86964	5% =	1.2704	95% = .27100	50% = .64203	5% =	.94513
90% = .44117	25% = 1.0561	1% =	1.4080	90% = .34143	25% = .77985	1% =	1.0510
29 MEAN = .82341	S.D. = .27626	P(N>=r) =	.41427	42 MEAN = .61445	S.D. = .20077	P(N>=r) =	.29964
99% = .20319	75% = .62667	10% =	1.1654	99% = .16879	75% = .47095	10% =	.86700
95% = .33537	50% = .84832	5% =	1.2396	95% = .26650	50% = .62770	5% =	.92505
90% = .43210	25% = 1.0303	1% =	1.3732	90% = .33517	25% = .76258	1% =	1.0293
30 MEAN = .80396	S.D. = .26917	P(N>=r) =	.40543	43 MEAN = .60132	S.D. = .19609	P(N>=r) =	.29081
99% = .20025	75% = .61210	10% =	1.1375	99% = .16650	75% = .46117	10% =	.84834
95% = .32916	50% = .82775	5% =	1.2101	95% = .26208	50% = .61373	5% =	.90547
90% = .42314	25% = 1.0054	1% =	1.3402	90% = .32904	25% = .74571	1% =	1.0082
31 MEAN = .78520	S.D. = .26238	P(N>=r) =	.39663	44 MEAN = .58848	S.D. = .19154	P(N>=r) =	.28199
99% = .19729	75% = .59805	10% =	1.1107	99% = .16424	75% = .45160	10% =	.83012
95% = .32304	50% = .80792	5% =	1.1817	95% = .25774	50% = .60008	5% =	.88637
90% = .41441	25% = .98147	1% =	1.3088	90% = .32302	25% = .72924	1% =	.98756
32 MEAN = .76710	S.D. = .25585	P(N>=r) =	.38783	45 MEAN = .57591	S.D. = .18710	P(N>=r) =	.27318
99% = .19435	75% = .58450	10% =	1.0849	99% = .16201	75% = .44221	10% =	.81232
95% = .31706	50% = .78883	5% =	1.1544	95% = .25346	50% = .58675	5% =	.86772
90% = .40596	25% = .95835	1% =	1.2787	90% = .31711	25% = .71309	1% =	.96745
33 MEAN = .74963	S.D. = .24954	P(N>=r) =	.37903	46 MEAN = .56361	S.D. = .18278	P(N>=r) =	.26436
99% = .19148	75% = .57145	10% =	1.0599	99% = .15979	75% = .43300	10% =	.79493
95% = .31127	50% = .77037	5% =	1.1281	95% = .24923	50% = .57369	5% =	.84949
90% = .39781	25% = .93601	1% =	1.2499	90% = .31129	25% = .69726	1% =	.94783
34 MEAN = .73274	S.D. = .24344	P(N>=r) =	.37023	47 MEAN = .55154	S.D. = .17856	P(N>=r) =	.25554
99% = .18869	75% = .55885	10% =	1.0358	99% = .15759	75% = .42395	10% =	.77790
95% = .30567	50% = .75260	5% =	1.1026	95% = .24507	50% = .56089	5% =	.83168
90% = .38995	25% = .91439	1% =	1.2221	90% = .30556	25% = .68173	1% =	.92866
35 MEAN = .71640	S.D. = .23754	P(N>=r) =	.36141	48 MEAN = .53971	S.D. = .17446	P(N>=r) =	.24672
99% = .18598	75% = .54669	10% =	1.0125	99% = .15541	75% = .41505	10% =	.76124
95% = .30027	50% = .73543	5% =	1.0780	95% = .24095	50% = .54834	5% =	.81425
90% = .38237	25% = .89346	1% =	1.1953	90% = .29991	25% = .66652	1% =	.90993
36 MEAN = .70057	S.D. = .23181	P(N>=r) =	.35259	49 MEAN = .52810	S.D. = .17045	P(N>=r) =	.23790
99% = .18335	75% = .53493	10% =	.98985	99% = .15323	75% = .40628	10% =	.74493
95% = .29504	50% = .71873	5% =	1.0542	95% = .23687	50% = .53601	5% =	.79718
90% = .37504	25% = .87317	1% =	1.1694	90% = .29432	25% = .65165	1% =	.89161
37 MEAN = .68522	S.D. = .22625	P(N>=r) =	.34377	50 MEAN = .51669	S.D. = .16655	P(N>=r) =	.22908
99% = .18079	75% = .52352	10% =	.96791	99% = .15107	75% = .39765	10% =	.72894
95% = .28998	50% = .70262	5% =	1.0311	95% = .23282	50% = .52390	5% =	.78047
90% = .36795	25% = .85346	1% =	1.1443	90% = .28880	25% = .63719	1% =	.87368
38 MEAN = .67030	S.D. = .22086	P(N>=r) =	.33494	51 MEAN = .50548	S.D. = .16274	P(N>=r) =	.22027
99% = .17830	75% = .51245	10% =	.94661	99% = .14891	75% = .38913	10% =	.71326
95% = .28506	50% = .68694	5% =	1.0087	95% = .22881	50% = .51200	5% =	.76410
90% = .36106	25% = .83431	1% =	1.1199	90% = .28333	25% = .62319	1% =	.85614
39 MEAN = .65580	S.D. = .21562	P(N>=r) =	.32611	52 MEAN = .49445	S.D. = .15903	P(N>=r) =	.21145
99% = .17586	75% = .50168	10% =	.92590	99% = .14675	75% = .38072	10% =	.69789
95% = .28027	50% = .67165	5% =	.98692	95% = .22482	50% = .50030	5% =	.74805
90% = .35436	25% = .81568	1% =	1.0963	90% = .27791	25% = .60937	1% =	.83896

Pool rank	D	listi	ibution			
53 MEAN = .48361	S.D.	=	.15542	P(N>=r)	=	.20263
99% = .14460	75%	=	.37242	10%	=	.68279
95% = .22085	50%	=	.48878	5%	=	.73231
90% = .27254	25%	=	.59578	1%	=	.82212
54 MEAN = .47293	S.D.	=	.15189	P(N>=r)	=	.19382
99% = .14244	75%	=	.36422	10%	=	.66797
95% = .21689	50%	=	.47746	5%	=	.71688
90% = .26720	25%	=	.58228	1%	=	.80562
55 MEAN = .46242	S.D.	=	.14846	P(N>=r)	=	.18501
99% = .14027	75%	=	.35612	10%	=	.65339
95% = .21295	50%	=	.46631	5%	=	.70173
90% = .26189	25%	=	.56897	1%	=	.78945
56 MEAN = .45208	S.D.	=	.14511	P(N>=r)	=	.17620
99% = .13810	75%	=	.34811	10%	=	.63893
95% = .20902	50%	=	.45535	5%	=	.68687
90% = .25662	25%	=	.55592	1%	=	.77359
57 MEAN = .44190	S.D.	=	.14184	P(N>=r)	=	.16741
99% = .13593	75%	=	.34019	10%	=	.62473
95% = .20510	50%	=	.44457	5%	=	.67229
90% = .25138	25%	=	.54312	1%	=	.75803
58 MEAN = .43188	S.D.	=	.13866	P(N>=r)	=	.15862
99% = .13375	75%	=	.33238	10%	=	.61066
95% = .20120	50%	=	.43396	5%	=	.65797
90% = .24617	25%	=	.53056	1%	=	.74278
59 MEAN = .42203	S.D.	=	.13556	P(N>=r)	=	.14985
99% = .13156	75%	=	.32466	10%	=	.59709
95% = .19730	50%	=	.42354	5%	=	.64390
90% = .24101	25%	=	.51822	1%	=	.72782
60 MEAN = .41234	S.D.	=	.13254	P(N>=r)	=	.14111
99% = .12937	75%	=	.31706	10%	=	.58407
95% = .19343	50%	=	.41331	5%	=	.63007
90% = .23588	25%	=	.50612	1%	=	.71315
61 MEAN = .40283	S.D.	=	.12960	P(N>=r)	=	.13239
99% = .12718	75%	=	.30958	10%	=	.57134
95% = .18958	50%	=	.40327	5%	=	.61631
90% = .23081	25%	=	.49425	1%	=	.69876
62 MEAN = .39350	S.D.	=	.12673	P(N>=r)	=	.12373
99% = .12500	75%	=	.30222	10%	=	.55870
95% = .18576	50%	=	.39344	5%	=	.60259
90% = .22580	25%	=	.48263	1%	=	.68466

Pool rank	Dist	ribution			
63 MEAN = .38436	S.D. =	.12393	P(N>=r)	=	.11513
99% = .12283	75% =	.29501	10%	=	.54622
95% = .18198	50% =	.38382	5%	=	.58915
90% = .22085	25% =	.47125	1%	=	.67085
64 MEAN = .37542	S.D. =	.12120	P(N>=r)	=	.10662
99% = .12067	75% =	.28796	10%	=	.53400
95% = .17826	50% =	.37443	5%	=	.57633
90% = .21600	25% =	.46013	1%	=	.65733
65 MEAN = .36669	S.D. =	.11853	P(N>=r)=	=.98	3225E-01
99% = .11854	75% =	.28107	10%	=	.52207
95% = .17459	50% =	.36527	5%	=	.56410
90% = .21123	25% =	.44928	1%	=	.64409
66 MEAN = .35818	S.D. =	.11594	P(N>=r)	=	.89969E-01
99% = .11644	75% =	.27436	10%	=	.51041
95% = .17100	50% =	.35637	5%	=	.55214
90% = .20658	25% =	.43870	1%	=	.63115
67 MEAN = .34990	S.D. =	.11340	P(N>=r)	=	.81893E-01
99% = .11438	75% =	.26785	10%	=	.49905
95% = .16750	50% =	.34772	5%	=	.54032
90% = .20205	25% =	.42840	1%	=	.61850
68 MEAN = .34186	S.D. =	.11093	P(N>=r)	=	.74034E-01
99% = .11237	75% =	.26155	10%	=	.48798
95% = .16409	50% =	.33934	5%	=	.52872
90% = .19765	25% =	.41840	1%	=	.60612
69 MEAN = .33407	S.D. =	.10851	P(N>=r)	=	.66437E-01
99% = .11040	75% =	.25546	10%	=	.47722
95% = .16078	50% =	.33125	5%	=	.51744
90% = .19339	25% =	.40870	1%	=	.59391
70 MEAN = .32654	S.D. =	.10616	P(N>=r)	=	.59145E-01
99% = .10850	75% =	.24960	10%	=	.46676
95% = .15758	50% =	.32344	5%	=	.50646
90% = .18929	25% =	.39932	1%	=	.58191
71 MEAN = .31928	S.D. =	.10386	P(N>=r)	=	.52204E-01
99% = .10665	75% =	.24396	10%	=	.45663
95% = .15450	50% =	.31592	5%	=	.49580
90% = .18534	25% =	.39025	1%	=	.56921

E) The mean of the potential

=

35.600

PETRIMES MODULE PSUM

Monte Carlo sum simulation pool size distribution

UAI C5019902	Do
PLAY Tertiary/Upper Cretaceous Nonmarine Oil	Oi
Assessor Peter Hannigan	Br
Geologist Peter Hannigan	Re
RemarksKandik Assessment Project	Do
Run date Mon, Feb. 8, 1999, 11:52 a.m.	Do

User supplied parameters

Do you want to store in data base ?	>	Y
Oil (o) or gas (g) ?	>	Ο
British or S.I. unit of measurement?	>	Si
Recoverable resources?	>	Ν
Do you want to use MPRO output?	>	Y
Do you assume lognormal distribution?	>	Y
Do you want to use PPSD output?	>	Y
Do you compute conditional potential?	>	Ν

A) Basic information

Type of resource	=	oil in-place
System of measurement	=	S.I.
Unit of measurement	=	M cu m (19)

B) Lognormal pool size distribution

U							
Summary	mu	=	71278E-01	MEAN =	1.1975		
Statistics	sig. sq.	=	.50305	S.D. =	.96825		
Upper percentiles	99.99%	=	.66602E-01	60.00% =	.77805	15.00% =	1.9422
	99.00%	=	.17884	55.00% =	.85180	10.00% =	2.3110
	95.00%	=	.28999	50.00% =	.93120	8.00% =	2.5226
	90.00%	=	.37522	45.00% =	1.0180	6.00% =	2.8052
	85.00%	=	.44647	40.00% =	1.1145	5.00% =	2.9902
	80.00%	=	.51263	35.00% =	1.2239	4.00% =	3.2233
	75.00%	=	.57714	30.00% =	1.3507	2.00% =	3.9963
	70.00%	=	.64197	25.00% =	1.5025	1.00% =	4.8487
	65.00%	=	.70852	20.00% =	1.6916	.01% =	13.020

C) Number of pools distribution

Lower support	=	0
Upper support	=	102
Expectation	=	29.79207
Standard Deviation	=	21.72389

D) Summary statistics for 4,000 simulations

Play resource	(M cu m)	
Minimum	= .260493	36
Maximum	= 133.8290	
Expectation	= 35.35617	
Standard Deviation	n = 26.35989	

Empirical distribution

Play	Greater than	Play	Greater than	Play
potential	percentage	potential	percentage	potential
	50.00		8.00	79.421
2.6692	45.00		6.00	
6.1935	40.00		5.00	85.769
8.2957	35.00	41.825	4.00	88.858
10.235	30.00		2.00	95.461
12.090	25.00		1.00	100.97
13.848	20.00	61.714	.01	130.86
15.603	15.00	68.121	.00	133.53
17.592	10.00			
19.649				
	potential 	potential percentage	potential percentage potential	potential percentage potential percentage

PETRIMES MODULE MPRO

Number of of pools distribution and risks

UAI C5029902
PLAY Tertiary/Upper Cretaceous Nonmarine Gas
Assessor Peter Hannigan
Geologist Peter Hannigan
Remarks Kandik Assessment Project
Run date Fri., Feb. 5, 1999, 1:29 p.m.

A) Risks			
	Geological factor		Marginal probability
Play level	overall play level risk	=	1.00
	Prospect level presence of closure	(1)	.80
	Presence of reservoir facies	(2)	1.00
	Adequate seal	(4)	.70
	Adequate timing	(5)	.75
	Adequate source	(6)	.90
	Overall prospect level risk	=	.38
Exploration risk		=	.38

B) Number of p	rospects distribution	C) Number of pools dis	stribution
Minimum	= 14	Minimum =	0
Maximum	= 200	Maximum =	102
Mean	= 78.82	Mean =	29.79
S.D.	= 56.33	S.D. =	21.72
99.00 95 90 80 75 60 50 40 25 20 10 5 1		Frequency Num 100.00 0 99 2 95 6 90 8 80 10 75 12 60 16 50 21 40 30 25 47 20 53 10 64 5 71 1 80 0 102	4 6 8 0 2 6 1 0 7 3 4 1 Note: The number of pools 0 distribution is saved in the

User supplied parameters

Do you want to store on db?	>	Y
Oil (o) or gas (g) ?	>	G

PETRIMES MODULE PSRK

Individual pool sizes by rank where n is a random variable

UAI C5029902	Do you want to store on DB?	>	Y
PLAY Tertiary/Upper Cretaceous Nonmarine Gas	Do you want to use MPRO output?	>	Y
Assessor Peter Hannigan	Minimum and maximum pool ranks?	>	1
Geologist Peter Hannigan	Do you use lognornal assumption?	>	Y
Remarks Kandik Assessment Project	Do you want to use PPSD output?	>	Y
Run date Mon., Feb. 8, 1999, 11:22 a.m.			

User supplied parameters

71

A) Basic information

Type of resource	=	gas in-place
System of measurement	=	S.I.
Unit of measurement	=	M cu m (19)

B) Lognormal pool size distribution

Summary	mu = 5.3218	MEAN = 271.40	
Statistics	sig. sq. = .56362	S.D. = 236.14	
Upper percentiles	99.99% = 12.550	60.00% = 169.29	15.00% = 445.81
	99.00% = 35.705	55.00% = 186.32	10.00% = 535.88
	95.00% = 59.556	50.00% = 204.75	8.00% = 587.95
	90.00% = 78.231	45.00% = 225.01	6.00% = 657.88
	85.00% = 94.037	40.00% = 247.64	5.00% = 703.91
	80.00% = 108.85	35.00% = 273.44	4.00% = 762.12
	75.00% = 123.40	30.00% = 303.53	2.00% = 956.84
	70.00% = 138.12	25.00% = 339.73	1.00% = 1174.1
	65.00% = 153.32	20.00% = 385.15	.01% = 3340.3

C) Number of pools distribution

=	0
=	102
=	29.79
=	21.72
	= = =

D) Pool sizes by rank

Pool rank	Distribution			Pool rank	Distribution		
1 MEAN = 948.46	S.D. = 488.29	P(N>=r) =	.99996	14 MEAN = 250.00	S.D. = 117.82	P(N>=r) =	.69234
99% = 255.69	75% = 618.65	10% =	1536.3	99% = 39.746	75% = 145.93	10% =	401.65
95% = 373.60	50% = 856.25	5% =	1835.0	95% = 67.642	50% = 257.08	5% =	432.84
90% = 452.40	25% = 1160.6	1% =	2626.9	90% = 89.625	25% = 344.42	1% =	490.40
2 MEAN = 654.53	S.D. = 283.40	P(N>=r) =	.99955	15 MEAN = 244.37	S.D. = 112.79	P(N>=r) =	.65855
99% = 173.68	75% = 444.93	10% =	1022.4	99% = 38.929	75% = 145.83	10% =	387.96
95% = 265.21	50% = 621.21	5% =	1161.9	95% = 66.125	50% = 253.40	5% =	417.44
90% = 323.97	25% = 820.85	1% =	1483.1	90% = 87.841	25% = 334.03	1% =	471.82
3 MEAN = 530.58	S.D. = 228.74	P(N>=r) =	.99770	16 MEAN = 239.60	S.D. = 107.75	P(N>=r) =	.62627
99% = 124.19	75% = 355.47	10% =	833.74	99% = 38.409	75% = 147.73	10% =	375.36
95% = 202.99	50% = 508.89	5% =	931.99	95% = 65.272	50% = 249.81	5% =	403.31
90% = 253.44	25% = 680.39	1% =	1142.7	90% = 87.102	25% = 324.42	1% =	454.86
4 MEAN = 455.46	S.D. = 202.24	P(N>=r) =	.99225	17 MEAN = 235.43	S.D. = 102.70	P(N>=r) =	.59604
99% = 92.412	75% = 297.38	10% =	726.33	99% = 38.206	75% = 151.06	10% =	363.65
95% = 160.80	50% = 437.53	5% =	805.03	95% = 65.125	50% = 246.12	5% =	390.23
90% = 206.09	25% = 596.73	1% =	966.47	90% = 87.476	25% = 315.41	1% =	439.25
5 MEAN = 403.88	S.D. = 185.46	P(N>=r) =	.98068	18 MEAN = 231.56	S.D. = 97.690	P(N>=r) =	.56838
99% = 73.162	75% = 256.46	10% =	653.86	99% = 38.329	75% = 154.66	10% =	352.67
95% = 131.70	50% = 387.52	5% =	720.73	95% = 65.702	50% = 242.18	5% =	378.02
90% = 172.72	25% = 539.33	1% =	853.78	90% = 88.974	25% = 306.88	1% =	424.77
6 MEAN = 366.52	S.D. = 172.98	P(N>=r) =	.96150	19 MEAN = 227.75	S.D. = 92.814	P(N>=r) =	.54366
99% = 61.864	75% = 226.83	10% =	600.47	99% = 38.765	75% = 157.42	10% =	342.30
95% = 112.23	50% = 351.26	5% =	659.17	95% = 66.964	50% = 237.89	5% =	366.53
90% = 149.34	25% = 497.04	1% =	773.44	90% = 91.438	25% = 298.67	1% =	411.24
7 MEAN = 338.58	S.D. = 162.78	$P(N \ge r) =$.93518	20 MEAN = 223.78	S.D. = 88.205	P(N>=r) =	.52206
99% = 55.112	75% = 205.08	10% =	558.90	99% = 39.468	75% = 158.75	10% =	332.46
95% = 99.433	50% = 324.71	5% =	611.48	95% = 68.760	50% = 233.22	5% =	355.65
90% = 133.10	25% = 464.44	1% =	712.23	90% = 94.414	25% = 290.73	1% =	398.52
$\frac{3000}{8}$ MEAN = 317.07	S.D. = 154.08	P(N>=r) =	.90374	$\frac{3676}{21 \text{ MEAN}} = 219.52$	S.D. = 83.980	P(N>=r) =	.50348
99% = 50.847	75% = 188.76	10% =	525.22	99% = 40.339	75% = 158.62	10% =	323.07
95% = 90.818	50% = 305.18	5% =	572.96	95% = 40.339 95% = 70.780	50% = 228.20	5% =	345.33
90% = 121.59	25% = 438.36	1% =	663.40	90% = 97.179	25% = 282.95	1% =	386.51
9 MEAN = 299.97	S.D. = 146.49	$P(N \ge r) =$.86946	$\frac{3000}{22}$ MEAN = 214.95	S.D. = 80.212	P(N >= r) =	.48762
99% = 47.900	75% = 176.15	10% =	497.05	99% = 41.233	75% = 157.25	10% =	314.05
95% = 84.622	50% = 290.74	5% =	540.85	95% = 72.590	50% = 222.90	5% =	335.51
90% = 113.01	25% = 416.77	1% =	623.12	90% = 99.063	25% = 275.35	1% =	375.14
$\frac{10 \text{ MEAN}}{10 \text{ MEAN}} = 286.03$	S.D. = 139.78	P(N>=r) =	.83401	$\frac{3676}{23 \text{ MEAN}} = 210.11$	S.D. = 76.914	P(N>=r) =	.47400
99% = 45.641	75% = 166.17	10% =	472.94	99% = 41.977	75% = 154.93	10% =	305.36
95% = 79.798	50% = 280.03	5% =	513.43	95% = 73.803	50% = 217.41	5% =	326.13
90% = 106.21	25% = 398.40	1% =	589.02	90% = 99.788	25% = 267.89	1% =	364.34
$\frac{11}{11}$ MEAN = 274.46	S.D. = 133.74	$P(N \ge r) =$.79823	$\frac{30\%}{24} = 30.08$	S.D. = 74.039	P(N >= r) =	.46211
99% = 43.772	75% = 158.27	10% =	451.90	99% = 42.438	75% = 151.98	10% =	296.96
95% = 75.829	50% = 272.02	5% =	489.58	95% = 74.246	50% = 211.84	5% =	317.11
90% = 100.64	25% = 382.44	1% =	559.59	90% = 99.456	25% = 260.63	1% =	354.08
$\frac{3078 - 100.84}{12 \text{ MEAN}} = 264.79$	S.D. = 128.18			$\frac{30\%}{25} = \frac{39.430}{199.99}$	S.D. = 71.514		.45145
99% = 42.180	75% = 152.26	P(N>=r) = 10% =	.76252 433.30	99% = 42.563	75% = 148.64	P(N>=r) = 10% =	288.86
95% = 42.180 95% = 72.510	50% = 265.94	5% =	453.50	99% = 42.363 95% = 73.983	50% = 206.31	5% =	308.44
93% = 72.310 90% = 96.054	25% = 368.36	1% =	400.54 533.80	95% = 73.965 90% = 98.342	25% = 253.58	1% =	308.44 344.29
$\frac{90\% - 90.034}{13 \text{ MEAN} = 256.72}$	S.D. = 122.92	$P(N \ge r) =$.72713	$\frac{90\% - 98.342}{26 \text{ MEAN} = 194.92}$	S.D. = 69.258	P(N >= r) =	.44160
99% = 40.836	75% = 148.11	10% =	416.67	99% = 42.388	75% = 145.13	10% =	281.08
99% = 40.838 95% = 69.780	50% = 140.11 50% = 261.13	10% = 5% =	449.76	99% = 42.388 95% = 73.199	50% = 143.13 50% = 200.87	10% = 5% =	300.10
90% = 92.380	25% = 355.79	1% =	510.92	90% = 96.732	25% = 246.77	1% =	334.91

Pool rank	Distribution			Pool rank	Distribution		
27 MEAN = 189.94	S.D. = 67.200	P(N>=r) =	.43225	40 MEAN = 138.54	S.D. = 47.725	P(N>=r) =	.31728
99% = 41.995	75% = 141.57	10% =	273.62	99% = 34.570	75% = 104.03	10% =	198.83
95% = 72.092	50% = 195.57	5% =	292.10	95% = 56.429	50% = 141.47	5% =	212.80
90% = 94.852	25% = 240.22	1% =	325.83	90% = 72.197	25% = 173.78	1% =	237.97
28 MEAN = 185.11	S.D. = 65.290	P(N>=r) =	.42318	41 MEAN = 135.39	S.D. = 46.548	P(N>=r) =	.30846
99% = 41.467	75% = 138.06	10% =	266.47	99% = 34.074	75% = 101.74	10% =	194.27
95% = 70.813	50% = 190.45	5% =	284.46	95% = 55.436	50% = 138.13	5% =	207.99
90% = 92.856	25% = 233.93	1% =	317.16	90% = 70.793	25% = 169.70	1% =	232.74
29 MEAN = 180.43	S.D. = 63.490	P(N>=r) =	.41427	42 MEAN = 132.32	S.D. = 45.405	P(N>=r) =	.29964
99% = 40.870	75% = 134.63	10% =	259.62	99% = 33.585	75% = 99.504	10% =	189.84
95% = 69.465	50% = 185.51	5% =	277.17	95% = 54.462	50% = 134.87	5% =	203.32
90% = 90.836	25% = 227.88	1% =	308.88	90% = 69.421	25% = 165.73	1% =	227.65
30 MEAN = 175.92	S.D. = 61.779	P(N>=r) =	.40543	43 MEAN = 129.33	S.D. = 44.295	P(N>=r) =	.29081
99% = 40.245	75% = 131.32	10% =	253.06	99% = 33.104	75% = 97.318	10% =	185.52
95% = 68.104	50% = 180.75	5% =	270.18	95% = 53.507	50% = 131.69	5% =	198.77
90% = 88.844	25% = 222.06	1% =	301.01	90% = 68.078	25% = 161.85	1% =	222.70
31 MEAN = 171.57	S.D. = 60.142	P(N>=r) =	.39663	44 MEAN = 126.41	S.D. = 43.215	P(N>=r) =	.28199
99% = 39.614	75% = 128.13	10% =	246.75	99% = 32.628	75% = 95.180	10% =	181.30
95% = 66.763	50% = 176.17	5% =	263.48	95% = 52.568	50% = 128.60	5% =	194.33
90% = 86.905	25% = 216.47	1% =	293.56	90% = 66.761	25% = 158.07	1% =	217.89
32 MEAN = 167.39	S.D. = 58.569	P(N>=r) =	.38783	45 MEAN = 123.55	S.D. = 42.165	P(N>=r) =	.27318
99% = 38.991	75% = 125.06	10% =	240.67	99% = 32.158	75% = 93.087	10% =	177.19
95% = 65.456	50% = 171.77	5% =	257.03	95% = 51.644	50% = 125.57	5% =	190.00
90% = 85.031	25% = 211.07	1% =	286.43	90% = 65.468	25% = 154.36	1% =	213.20
33 MEAN = 163.35	S.D. = 57.053	P(N>=r) =	.37903	46 MEAN = 120.75	S.D. = 41.143	P(N>=r) =	.26436
99% = 38.382	75% = 122.11	10% =	234.82	99% = 31.692	75% = 91.036	10% =	173.18
95% = 64.192	50% = 167.52	5% =	250.83	95% = 50.735	50% = 122.62	5% =	185.78
90% = 83.224	25% = 205.87	1% =	279.59	90% = 64.197	25% = 150.74	1% =	208.62
34 MEAN = 159.45	S.D. = 55.589	P(N>=r) =	.37023	47 MEAN = 118.02	S.D. = 40.148	P(N>=r) =	.25554
99% = 37.790	75% = 119.26	10% =	229.17	99% = 31.231	75% = 89.023	10% =	169.25
95% = 62.971	50% = 163.43	5% =	244.85	95% = 49.837	50% = 119.72	5% =	181.66
90% = 81.485	25% = 200.84	1% =	273.02	90% = 62.946	25% = 147.19	1% =	204.16
35 MEAN = 155.69	S.D. = 54.173	P(N>=r) =	.36141	48 MEAN = 115.34	S.D. = 39.179	P(N>=r) =	.24672
99% = 37.215	75% = 116.52	10% =	223.71	99% = 30.773	75% = 87.046	10% =	165.42
95% = 61.793	50% = 159.49	5% =	239.07	95% = 48.950	50% = 116.89	5% =	177.63
90% = 79.809	25% = 195.98	1% =	266.68	90% = 61.714	25% = 143.71	1% =	199.80
36 MEAN = 152.05	S.D. = 52.801	$P(N \ge r) =$.35259	49 MEAN = 112.71	S.D. = 38.236	P(N>=r) =	.23790
99% = 36.658	75% = 113.87	10% =	218.42	99% = 30.317	75% = 85.101	10% =	161.67
95% = 60.655	50% = 155.66	5% =	233.48	95% = 48.074	50% = 114.11	5% =	173.70
90% = 78.192	25% = 191.27	1% =	260.56	90% = 60.498	25% = 140.32	1% =	195.55
$\frac{3000}{37}$ MEAN = 148.52	S.D. = 51.473	P(N>=r) =	.34377	50 MEAN = 110.13	S.D. = 37.317	P(N>=r) =	.22908
99% = 36.117	75% = 111.30	10% =	213.30	99% = 29.864	75% = 83.188	10% =	158.00
95% = 59.554	50% = 151.96	5% =	228.07	95% = 47.205	50% = 111.38	5% =	169.84
90% = 76.627	25% = 186.70	1% =	254.65	90% = 59.298	25% = 137.03	1% =	191.39
$\frac{38 \text{ MEAN}}{38 \text{ MEAN}} = 145.10$	S.D. = 50.185	P(N>=r) =	.33494	50% = 35.250 51 MEAN = 107.60	S.D. = 36.422	P(N>=r) =	.22027
99% = 35.590	75% = 108.81	10% =	208.34	99% = 29.413	75% = 81.303	10% =	154.40
95% = 58.485	50% = 148.38	5% =	208.34	95% = 29.413 95% = 46.344	50% = 108.71	5% =	166.08
$\frac{90\% = 75.110}{39 \text{ MEAN} = 141.77}$	25% = 182.27 S.D. = 48.936	1% = P(N>=r) =	248.92	90% = 58.110 52 MEAN = 105.12	25% = 133.84 S.D. = 35.550	1% =	.21145
99% = 35.075		. ,	.32611			$P(N \ge r) =$	
	75% = 106.39	10% = 5%	203.52	99% = 28.962	75% = 79.446	10% = 5% = 5%	150.88 162.39
95% = 57.445	50% = 144.88	5% =	217.74	95% = 45.489	50% = 106.08	5% =	
90% = 73.634	25% = 177.97	1% =	243.36	90% = 56.934	25% = 130.70	1% =	183.34

APPENDIX 3: OUTPUT DATA FOR KANDIK HYDROCARBON ASSE	ESSMENTS
---	----------

Pool rank		D	istri	ibution			
53 MEAN = 10	02.68	S.D.	=	34.701	P(N>=r)	=	.20263
99% = 28	8.512	75%	=	77.613	10%	=	147.43
95% = 4	4.639	50%	=	103.50	5%	=	158.77
90% = 5	5.769	25%	=	127.62	1%	=	179.45
54 MEAN = 10	00.28	S.D.	=	33.874	P(N>=r)	=	.19382
99% = 28	8.061	75%	=	75.805	10%	=	144.04
95% = 43	3.793	50%	=	100.96	5%	=	155.23
90% = 54	4.613	25%	=	124.56	1%	=	175.64
55 MEAN = 92	7.924	S.D.	=	33.068	P(N>=r)	=	.18501
99% = 22	7.610	75%	=	74.021	10%	=	140.72
95% = 42	2.952	50%	=	98.467	5%	=	151.76
90% = 53	3.466	25%	=	121.55	1%	=	171.91
56 MEAN = 93	5.607	S.D.	=	32.284	P(N>=r)	=	.17620
99% = 22	7.159	75%	=	72.260	10%	=	137.42
95% = 42	2.113	50%	=	96.018	5%	=	148.36
90% = 52	2.327	25%	=	118.60	1%	=	168.26
57 MEAN = 93	3.329	S.D.	=	31.520	P(N>=r)	=	.16741
99% = 20	6.706	75%	=	70.522	10%	=	134.19
95% = 4	1.278	50%	=	93.612	5%	=	145.03
90% = 5	1.197	25%	=	115.71	1%	=	164.68
58 MEAN = 9	1.091	S.D.	=	30.776	P(N>=r)	=	.15862
99% = 20	6.252	75%	=	68.808	10%	=	131.00
95% = 40	0.446	50%	=	91.250	5%	=	141.76
90% = 50	0.076	25%	=	112.88	1%	=	161.17
59 MEAN = 88	8.892	S.D.	=	30.052	P(N>=r)	=	.14985
99% = 2	5.798	75%	=	67.119	10%	=	127.92
95% = 39	9.618	50%	=	88.933	5%	=	138.56
90% = 48	8.964	25%	=	110.11	1%	=	157.74
60 MEAN = 80	6.734	S.D.	=	29.347	P(N>=r)	=	.14111
99% = 2	5.344	75%	=	65.457	10%	=	124.97
95% = 38	8.795	50%	=	86.660	5%	=	135.41
90% = 42	7.862	25%	=	107.39	1%	=	154.38
61 MEAN = 84	4.618	S.D.	=	28.660	P(N>=r)	=	.13239
99% = 24	4.891	75%	=	63.823	10%	=	122.09
95% = 32	7.978	50%	=	84.435	5%	=	132.28
90% = 40	6.773	25%	=	104.72	1%	=	151.08
62 MEAN = 82	2.545	S.D.	=	27.991	P(N>=r)	=	.12373
99% = 24	4.439	75%	=	62.219	10%	=	119.23
95% = 32	7.169	50%	=	82.257	5%	=	129.16
90% = 4	5.699	25%	=	102.12	1%	=	147.86

Pool rank		D	Disti	ribution			
63 MEAN =	80.517	S.D.	=	27.339	P(N>=r)	=	.11513
99% =	23.989	75%	=	60.649	10%	=	116.41
95% =	36.369	50%	=	80.130	5%	=	126.12
90% =	44.641	25%	=	99.570	1%	=	144.70
64 MEAN =	78.536	S.D.	=	26.704	P(N>=r)	=	.10662
99% =	23.544	75%	=	59.114	10%	=	113.66
95% =	35.582	50%	=	78.056	5%	=	123.22
90% =	43.602	25%	=	97.085	1%	=	141.62
65 MEAN =	76.605	S.D.	=	26.085	P(N>=r)	=	.98225E-01
99% =	23.104	75%	=	57.618	10%	=	110.97
95% =	34.808	50%	=	76.037	5%	=	120.45
90% =	42.585	25%	=	94.663	1%	=	138.60
66 MEAN =	74.724	S.D.	=	25.482	P(N>=r)	=	.89969E-01
99% =	22.671	75%	=	56.164	10%	=	108.35
95% =	34.051	50%	=	74.076	5%	=	117.75
90% =	41.593	25%	=	92.305	1%	=	135.65
67 MEAN =	72.897	S.D.	=	24.894	P(N>=r)	=	.81893E-01
99% =	22.247	75%	=	54.754	10%	=	105.80
95% =	33.313	50%	=	72.175	5%	=	115.08
90% =	40.628	25%	=	90.014	1%	=	132.78
68 MEAN =	71.126	S.D.	=	24.321	P(N>=r)	=	.74034E-01
99% =	21.832	75%	=	53.391	10%	=	103.32
95% =	32.595	50%	=	70.335	5%	=	112.47
90% =	39.692	25%	=	87.791	1%	=	129.97
69 MEAN =	69.412	S.D.	=	23.763	P(N>=r)	=	.66437E-01
99% =	21.429	75%	=	52.077	10%	=	100.90
95% =	31.900	50%	=	68.560	5%	=	109.93
90% =	38.788	25%	=	85.639	1%	=	127.20
70 MEAN =	67.757	S.D.	=	23.219	P(N>=r)	=	.59145E-01
99% =	21.037	75%	=	50.812	10%	=	98.567
95% =	31.229	50%	=	66.851	5%	=	107.46
90% =	37.916	25%	=	83.558	1%	=	124.48
71 MEAN =	66.162	S.D.	=	22.690	P(N>=r)	=	.52204E-01
99% =	20.659	75%	=	49.600	10%	=	96.303
95% =	30.582	50%	=	65.208	5%	=	105.07
90% =	37.079	25%	=	81.551	1%	=	121.60

E) The mean of the potential

8

=

8069.9

PETRIMES MODULE PSUM

Monte Carlo sum simulation pool size distribution

•	
UAI	Do you want to store in database?
PLAY Tertiary/Upper Cretaceous Nonmarine Gas	Oil (o) or gas (g)?
Assessor Peter Hannigan	British or S.I. init of measurement?
Geologist Peter Hannigan	Recoverable resources?
Remarks Kandik Assessment Project	Do you want to use MPRO output?
Run date Mon, Feb. 8, 1999, 11:31 a.m.	Do you assume lognormal distribution?
	Do you want to use PPSD output?

User supplied parameters

Do you compute conditional potential?

D) Summary statistics for 4,000 simulations

(Bcum)

.5316375E-01

30.73407

8.012095

5.991732

=

=

=

=

Play resource

Minimum

Maximum

Expectation

Standard Deviation

Υ

G

Si

Ν

Υ

Y

Υ

Ν

445.81 535.88 587.95 657.88 703.91 762.12 956.84 1174.1 3340.3

>

>

>

> >

>

>

>

A) Basic information

Type of resource	=	Gas in-place
System of measurement	=	S.I.
Unit of measurement	=	M cu m (19)

B) Lognormal pool size distribution

•			
Summary	mu = 5.3218	MEAN = 271.40	
Statistics	sig. sq. = .56362	S.D. = 236.14	
Upper percentiles	99.99% = 12.550	60.00% = 169.29	15.00% =
	99.00% = 35.705	55.00% = 186.32	10.00% =
	95.00% = 59.556	50.00% = 204.75	8.00% =
	90.00% = 78.231	45.00% = 225.01	6.00% =
	85.00% = 94.037	40.00% = 247.64	5.00% =
	80.00% = 108.85	35.00% = 273.44	4.00% =
	75.00% = 123.40	30.00% = 303.53	2.00% =
	70.00% = 138.12	25.00% = 339.73	1.00% =
	65.00% = 153.32	20.00% = 385.15	.01% =

C) Number of pools distribution

=	0
=	102
=	29.79207
=	21.72389
	=

Empirical distribution

99.00 95.00 90.00 85.00 80.00 75.00 70.00	Play potential 	50.00 45.00 40.00 35.00 30.00 25.00 20.00	Play potential 	8.00 6.00 5.00 4.00 2.00 1.00	Play potential 17.255 18.034 18.966 20.131 21.757 23.032 29.965 30.657
		15.00	15.414	.00	

PETRIMES MODULE MPRO

Number of pools distribution and risks

UAI C5039902	Do you want to store on db?	>	Y
PLAY Mesozoic Marine Structural Gas	Oil (o) or gas (g) ?	>	G
Assessor Peter Hannigan			
Geologist Peter Hannigan			
Remarks Kandik Assessment Project			
Run date Tue., Feb. 9, 1999, 10:38 a.m.			

A) Risks

	Geological factor		Marginal probability
Play level	Overall play level risk	=	1.00
Prospect level	Presence of closure	(1)	.50
	Presence of reservoir facies	(2)	.50
	Adequate seal	(4)	.40
	Adequate timing	(5)	.75
	Adequate source	(6)	.80
	Overall prospect level risk	=	.06
Exploration risk		=	.06

B) Number of prospects distribution

Minimum	=	30			
Maximum	=	270			
Mean	=	135.05			
S.D.	=	70.31			
1 /		Number of prospects			
99.00		30			
95	95				
90	90				
8065					
75		75			
60					
50					
40150					
25					

10.....240

5.....255

1......267

0......270

C) Number of pools distribution

User supplied parameters

Minimum	=	0
Maximum	=	34
Mean	=	8.10
S.D.	=	5.04

Note: The number of pools distribution is saved in the database with UDI= 6201GB4

PETRIMES MODULE PSRK

Individual pool sizes by rank where n is a random variable

Do you want to store on DB?	>	Y	
Do you want to use MPRO output?	>	Y	
Minimum and maximum pool ranks?	>	1	17
Do you use lognornal assumption?	>	Y	
Do you want to use PPSD output?	>	Y	
	Do you want to use MPRO output? Minimum and maximum pool ranks? Do you use lognornal assumption?	Do you want to use MPRO output?>Minimum and maximum pool ranks?>Do you use lognornal assumption?>	YDo you want to use MPRO output?>YMinimum and maximum pool ranks?>Do you use lognornal assumption?>Y

A) Basic information

Type of resource	=	Gas in-place
System of measurement	=	S.I.
Unit of measurement	=	M cu m (19)

B) Lognormal pool size distribution

Summary	mu = 6.9202	MEAN = 1448.3	
Statistics	sig. sq. = .71594	S.D. = 1481.3	
Upper percentiles	99.99% = 43.528	60.00% = 817.14	15.00% = 2433.6
	99.00% = 141.43	55.00% = 910.37	10.00% = 2994.5
	95.00% = 251.74	50.00% = 1012.5	8.00% = 3324.4
	90.00% = 342.34	45.00% = 1126.1	6.00% = 3773.4
	85.00% = 421.25	40.00% = 1254.6	5.00% = 4072.2
	80.00% = 496.73	35.00% = 1402.8	4.00% = 4453.7
	75.00% = 572.19	30.00% = 1578.0	2.00% = 5755.5
	70.00% = 649.67	25.00% = 1791.6	1.00% = 7248.7
	65.00% = 730.80	20.00% = 2063.8	.01% = 23552.

C) Number of pools distribution

Lower Support	=	0	
Upper Support	=	34	
Expectation	=	8.10	
Standard Deviation	=	5.04	

User supplied parameters

APPENDIX 3: OUTPUT DATA FOR KANDIK HYDROCARBON ASSESS	AENTS

D) Pool sizes by rank

Р	Pool rank Distribution							
1	MEAN =	3695.9	S.D.	=	2598.1	P(N>=r)	=	.98513
	99% =	455.89	75%	=	2035.3	10%	=	6663.4
	95% =	939.68	50%	=	3109.6	5%	=	8369.3
	90% =	1295.9	25%	=	4626.3	1%	=	13145.
2	MEAN =	2190.1	S.D.	=	1257.2	P(N>=r)	=	.94261
	99% =	280.48	75%	=	1299.3	10%	=	3788.2
	95% =	568.58	50%	=	1988.5	5%	=	4494.8
	90% =	799.76	25%	=	2830.0	1%	=	6209.7
3	MEAN =	1637.7	S.D.	=	894.28	P(N>=r)	=	.87564
	99% =	218.88	75%	=	980.74	10%	=	2806.0
	95% =	426.31	50%	=	1517.4	5%	=	3268.5
	90% =	596.97	25%	=	2142.5	1%	=	4320.4
4	MEAN =	1335.2	S.D.	=	710.41	P(N>=r)	=	.79570
	99% =	188.28	75%	=	804.22	10%	=	2274.7
	95% =	355.07	50%	=	1247.4	5%	=	2625.7
	90% =	491.80	25%	=	1754.9	1%	=	3395.4
5	MEAN =	1138.4	S.D.	=	593.32	P(N>=r)	=	.71252
	99% =	169.61	75%	=	691.52	10%	=	1928.3
	95% =	312.14	50%	=	1068.2	5%	=	2214.0
	90% =	427.55	25%	=	1497.2	1%	=	2826.1
6	MEAN =	996.52	S.D.	=	509.82	P(N>=r)	=	.63161
	99% =	156.53	75%	=	611.51	10%	=	1678.0
	95% =	282.54	50%	=	937.39	5%	=	1920.1
	90% =	383.10	25%	=	1308.5	1%	=	2430.7
7	MEAN =	886.84	S.D.	=	446.26	P(N>=r)	=	.55543
	99% =	146.41	75%	=	549.85	10%	=	1485.0
	95% =	259.97	50%	=	835.31	5%	=	1695.5
	90% =	349.21	25%	=	1161.3	1%	=	2134.9
8	MEAN =	797.82	S.D.	=	395.85	P(N>=r)	=	.48477
	99% =	137.88	75%	=	499.25	10%	=	1329.5
	95% =	241.28	50%	=	751.72	5%	=	1516.0
	90% =	321.32	25%	=	1041.6	1%	=	1902.4
9	MEAN =	723.12	S.D.	=	354.76	P(N>=r)	=	.41951
	99% =	130.24	75%	=	455.95	10%	=	1200.5
	95% =	224.87	50%	=	681.06	5%	=	1368.1
	90% =	297.06	25%	=	941.33	1%	=	1713.3

Pool rank	D	list	tribution			
10 MEAN = 659.18	S.D.	=	320.60	P(N>=r)	=	.35912
99% = 123.17	75%	=	418.07	10%	=	1091.3
95% = 210.00	50%	=	620.24	5%	=	1243.4
90% = 275.39	25%	=	855.79	1%	=	1555.7
11 MEAN = 603.87	S.D.	=	291.76	P(N>=r)	=	.30316
99% = 116.59	75%	=	384.74	10%	=	997.64
95% = 196.47	50%	=	567.49	5%	=	1137.0
90% = 255.92	25%	=	782.09	1%	=	1422.1
12 MEAN = 555.85	S.D.	=	267.09	P(N>=r)	=	.25145
99% = 110.54	75%	=	355.52	10%	=	916.73
95% = 184.25	50%	=	521.67	5%	=	1045.2
90% = 238.54	25%	=	718.25	1%	=	1307.6
13 MEAN = 514.11	S.D.	=	245.79	P(N>=r)	=	.20419
99% = 105.04	75%	=	330.02	10%	=	846.48
95% = 173.36	50%	=	481.91	5%	=	965.48
90% = 223.20	25%	=	662.84	1%	=	1208.5
14 MEAN = 477.83	S.D.	=	227.25	P(N>=r)	=	.16182
99% = 100.12	75%	=	307.89	10%	=	785.28
95% = 163.74	50%	=	447.47	5%	=	896.03
90% = 209.77	25%	=	614.69	1%	=	1122.1
15 MEAN = 446.27	S.D.	=	211.02	P(N>=r)	=	.12479
99% = 95.752	75%	=	288.73	10%	=	731.82
95% = 155.31	50%	=	417.64	5%	=	835.27
90% = 198.05	25%	=	572.79	1%	=	1046.6
16 MEAN = 418.78	S.D.	=	196.76	P(N>=r)	=	.93448E-01
99% = 91.883	75%	=	272.15	10%	=	685.00
95% = 147.93	50%	=	391.79	5%	=	781.95
90% = 187.86	25%	=	536.29	1%	=	980.09
17 MEAN = 394.77	S.D.	=	184.19	P(N>=r)	=	.67827E-01
99% = 88.459	75%	=	257.76	10%	=	643.90
95% = 141.47	50%	=	369.34	5%	=	735.02
90% = 178.97	25%	=	504.41	1%	=	921.40

E) The mean of the potential

11688.

=

PETRIMES MODULE PSUM

Monte Carlo sum simulation pool size distribution

UAI C5039902
PLAY Mesozoic Marine Structural Gas
Assessor Peter Hannigan
Geologist Peter Hannigan
Remarks Kandik Assessment Project
Run date Tue., Feb. 9, 1999, 10:42 a.m.

User supplied parameters

Do you want to store in data base?	>	Y
Oil (o) or gas (g)?	>	G
British or S.I. unit of measurement?	>	Si
Recoverable resources?	>	Ν
Do you want to use MPRO output?	>	Y
Do you assume lognormal distribution?	>	Y
Do you want to use PPSD output?	>	Y
Do you compute conditional potential?	>	Ν

A) Basic information

Type of resource	=	Gas in-place
System of measurement	=	S.I.
Unit of measurement	=	M cu m (19)

B) Lognormal Pool Size Distribution

-			
Summary	mu = 6.9202	MEAN = 1448.3	
Statistics	sig. sq. = .71594	S.D. = 1481.3	
Upper percentiles	99.99% = 43.528	60.00% = 817.14	15.00% = 2433.6
	99.00% = 141.43	55.00% = 910.37	10.00% = 2994.5
	95.00% = 251.74	50.00% = 1012.5	8.00% = 3324.4
	90.00% = 342.34	45.00% = 1126.1	6.00% = 3773.4
	85.00% = 421.25	40.00% = 1254.6	5.00% = 4072.2
	80.00% = 496.73	35.00% = 1402.8	4.00% = 4453.7
	75.00% = 572.19	30.00% = 1578.0	2.00% = 5755.5
	70.00% = 649.67	25.00% = 1791.6	1.00% = 7248.7
	65.00% = 730.80	20.00% = 2063.8	.01% = 23552.

D) Summary statistics for 4,000 simulations

(Bcum)

.0000000E+00

52.91261

11.89931

8.387727

=

=

=

Play Resource

Standard Deviation =

Minimum

Maximum

Expectation

C) Number of pools distribution

Lower Support	=	0
Upper Support	=	34
Expectation	=	8.10270
Standard Deviation	=	5.04106

Empirical distribution

Greater than	Play	Greater than	Play	Greater than	Play
percentage	potential	percentage	potential	percentage	potential
100.00		55.00	9.2813	10.00	23.576
95.00	1.3471	50.00	10.346	8.00	24.782
90.00		45.00	11.517	6.00	
85.00		40.00	12.676	5.00	27.741
80.00		35.00	13.871	4.00	
75.00	5.2509	30.00	15.184	2.00	32.587
70.00		25.00	16.898	1.00	37.087
65.00	7.1735	20.00	18.813	.01	50.187
60.00		15.00	21.016	.00	52.640

PETRIMES MODULE MPRO

Number of pools distribution and risks

-			
UAI C5059902	Do you want to store on db?	>	Y
PLAY Paleozoic Marine Structural Oil	Oil (o) or gas (g)?	>	Ο
Assessor Peter Hannigan			
Geologist Peter Hannigan			
Remarks Kandik Hydrocarbon Assessment			
Run date Wed., Feb. 10, 1999, 9:17 a.m.			

A) Risks

	Geological factor		Marginal probability
Play level	Overall play level risk	=	1.00
Prospect level	Presence of closure	(1)	.50
	Presence of reservoir facies	(2)	.30
	Adequate seal	(4)	.75
	Adequate timing	(5)	.50
	Adequate source	(6)	.70
	Overall prospect level risk	=	.04
Exploration risk		=	.04

B) Number of prospects distribution

Minimum	=	12
Maximum	=	130
Mean	=	65.76
S.D.	=	34.48

 Frequency
 Number of prospects

 99.00
 12

 95
 16

 90
 21

 80
 31

75	
60	51
50	60
40	
25	95
20	102
10	116
5	
1	129

C) Number of pools distribution

User supplied parameters

Number of p	ooois ui	sundu	uon
Minimum	=	0	
Maximum	=	17	
Mean	=	2.5	59
S.D.	=	2.0)8
Frequency	Nu	mber o	of pools
84.77		. 0	
80		. 1	
75		. 1	
60		. 2	
50		. 2	
40		. 3	
25		. 4	
20		. 4	
10		. 5	
5		. 7	
1		. 9	Note: T
0		17	saved in

Note: The number of pools distribution is saved in the database with UDI= 6201OB4

PETRIMES MODULE PSRK

Individual pool sizes by rank where n is a random variable

UAI	C5059902	Do you want to store on DB?	>	Y	
PLAY	Paleozoic Marine Structural Oil	Do you want to use MPRO output?	>	Y	
Assessor	Peter Hannigan	Minimum and maximum pool ranks?	>	1	7
Geologist	Peter Hannigan	Do you use lognornal assumption?	>	Y	
Remarks	Kandik Hydrocarbon Assessment	Do you want to use PPSD output?	>	Y	
Run date	Wed., Feb. 10, 1999, 9:19 a.m.				

User supplied parameters

A) Basic information

Type of resource	=	Oil in-place
System of measurement	=	S.I.
Unit of measurement	=	M cu m (19)

B) Lognormal pool size distribution

Summary	mu	=	1.8148	MEAN	-	8.7160		
Statistics	sig. sq.	=	.70073	S.D.	=	8.7821		
Upper percentiles	99.99%	=	.27297	60.00%	-	4.9665	15.00% =	14.620
	99.00%	=	.87582	55.00%	=	5.5268	10.00% =	17.950
	95.00%	=	1.5494	50.00%	=	6.1398	8.00% =	19.905
	90.00%	=	2.1001	45.00%	-	6.8208	6.00% =	22.563
	85.00%	=	2.5785	40.00%	=	7.5903	5.00% =	24.330
	80.00%	=	3.0352	35.00%	-	8.4769	4.00% =	26.583
	75.00%	=	3.4910	30.00%	=	9.5235	2.00% =	34.260
	70.00%	=	3.9583	25.00%	-	10.798	1.00% =	43.042
	65.00%	=	4.4470	20.00%	=	12.420	.01% =	138.10

C) Number of pools distribution

Lower Support	=	0	
Upper Support	=	17	
Expectation	=	2.59	
Standard Deviation	=	2.08	

APPENDIX 3: OUTPUT	DATA FOR KANDIK HYDROCARBON ASSESSMENTS

Ро	ool rank	D	istr	ibution			
1	MEAN = 14.473	S.D.	=	12.123	P(N>=r)	=	.84769
	99% = 1.4049	75%	=	6.7462	10%	=	28.099
	95% = 2.7736	50%	=	11.385	5%	=	36.345
	90% = 3.9402	25%	=	18.392	1%	=	59.702
2	MEAN = 8.0055	S.D.	=	5.3850	P(N>=r)	=	.63840
	99% = 1.0273	75%	=	4.2000	10%	=	14.817
	95% = 1.8746	50%	=	6.8195	5%	=	18.141
	90% = 2.5649	25%	=	10.432	1%	=	26.361
3	MEAN = 5.7884	S.D.	=	3.5845	P(N>=r)	=	.44541
	99% = .86275	75%	=	3.1921	10%	=	10.463
	95% = 1.5090	50%	=	5.0489	5%	=	12.577
_	90% = 2.0165	25%	=	7.5517	1%	=	17.521
4	MEAN = 4.6088	S.D.	=	2.7119	P(N>=r)	=	.29034
	99% = .76208	75%	=	2.6288	10%	=	8.1893
	95% = 1.2960	50%	=	4.0700	5%	=	9.7523
	90% = 1.7036	25%	=	5.9926	1%	=	13.303

D)	Pool	sizes	by	rank
----	------	-------	----	------

Ро	ol rank		D	istr	ibution			
5	MEAN =	3.8656	S.D.	=	2.1877	P(N>=r)	=	.17602
	99% =	.69194	75%	=	2.2643	10%	=	6.7709
	95% =	1.1526	50%	=	3.4434	5%	=	8.0142
_	90% =	1.4968	25%	=	5.0042	1%	=	10.792
6	MEAN =	3.3548	S.D.	=	1.8371	P(N>=r)	=	.98683E-01
	99% =	.63993	75%	=	2.0095	10%	=	5.8016
	95% =	1.0492	50%	=	3.0097	5%	=	6.8346
_	90% =	1.3497	25%	=	4.3238	1%	=	9.1182
7	MEAN =	2.9842	S.D.	=	1.5868	P(N>=r)	=	.50980E-01
	99% =	.59987	75%	=	1.8223	10%	=	5.1009
	95% =	.97122	50%	=	2.6941	5%	=	5.9848
	90% =	1.2399	25%	=	3.8302	1%	=	7.9248

E) The mean of the potential

= 22.460

PETROLEUM RESOURCE ASSESSMENT OF THE KANDIK BASIN, YUKON TERRITORY, CANADA

PETRIMES MODULE PSUM

Monte Carlo sum simulation pool size distribution

UAI C5059902
PLAY Paleozoic Marine Structural Oil
Assessor Peter Hannigan
Geologist Peter Hannigan
RemarksKandik Hydrocarbon Assessment
Run date Wed., Feb. 10, 1999, 9:23 a.m.

User supplied parameters

Do you want to store in data base?	>	Y
Oil (o) or gas (g)?	>	Ο
British or S.I. unit of measurement?	>	Si
Recoverable resources?	>	Ν
Do you want to use MPRO output?	>	Y
Do you assume lognormal distribution?	>	Y
Do you want to use PPSD output?	>	Y
Do you compute conditional potential?	>	Ν

A) Basic information

Type of resource	=	Oil in-place
System of measurement	=	S.I.
Unit of measurement	=	M cu m (19)

B) Lognormal pool size distribution

• •							
Summary	mu =	1.8148	MEAN	=	8.7160		
Statistics	sig. sq. =	.70073	S.D.	=	8.7821		
Upper percentiles	99.99% =	.27297	60.00%	=	4.9665	15.00% =	14.620
	99.00% =	.87582	55.00%	=	5.5268	10.00% =	17.950
	95.00% =	1.5494	50.00%	=	6.1398	8.00% =	19.905
	90.00% =	2.1001	45.00%	=	6.8208	6.00% =	22.563
	85.00% =	2.5785	40.00%	=	7.5903	5.00% =	24.330
	80.00% =	3.0352	35.00%	=	8.4769	4.00% =	26.583
	75.00% =	3.4910	30.00%	=	9.5235	2.00% =	34.260
	70.00% =	3.9583	25.00%	=	10.798	1.00% =	43.042
	65.00% =	4.4470	20.00%	=	12.420	.01% =	138.10

C) Number of pools distribution

Lower Support	=	0
Upper Support	=	17
Expectation	=	2.58910
Standard Deviation	=	2.08093

D) Summary statistics for 4,000 simulations

Play Resource	(M c	cum)
Minimum	=	.0000000E+00
Maximum	=	186.0671
Expectation	=	22.78119
Standard Deviation	=	22.66628

Empirical distribution

Greater than	Play	Greater than	Play	Greater than	Play
percentage	potential	percentage	potential	percentage	potential
100.00	00000E+00	45.00	19.036	8.00	58.894
80.00		40.00		6.00	65.001
75.00	5.3183	35.00		5.00	68.595
70.00	7.5177	30.00		4.00	71.985
65.00		25.00		2.00	84.207
60.00		20.00		1.00	94.959
55.00		15.00		.01	170.86
50.00		10.00		.00	184.55

PETRIMES MODULE MPRO

Number of pools distribution and risks

UAI C5049902	Do you want to store on DB?	>	Y
PLAY Paleozoic Marine Structural Gas	Oil (o) or gas (g)?	>	G
Assessor Peter Hannigan			
Geologist Peter Hannigan			
Remarks Kandik Assessment Project			
Run date Fri., Feb. 5, 1999, 2:23 p.m.			

A) Risks

	Geological factor		Marginal probability
Play level	Overall play level risk	=	1.00
Prospect level	Presence of closure	(1)	.50
	Presence of reservoir facies	(2)	.30
	Adequate seal	(4)	.75
	Adequate timing	(5)	.50
	Adequate source	(6)	.70
Overall prospect level	risk	=	.04
Exploration risk		=	.04

B) Number of prospects distribution

Minimum	=	45
Maximum	=	500
Mean	= 24	45.87
S.D.	= 13	33.17

Number of prospects Frequency 99.00......45

95	60
90	78
80	113
75	131
60	
50	220
40	
25	
20	
10	444
5	
1	495
0	500

C) Number of pools distribution

Minimum	=	0
Maximum	=	39
Mean	=	9.68
S.D.	=	6.07

User supplied parameters

quency Number of pools 98.72 0 Frequency 95.....2 90.....2 75.....5 60.....7

50	9	
40 1	1	
251	4	
20 1	5	
10	8	
5 2	21	
12	:5	Ν

Note: The number of pools distribution is saved in the database with UDI= 6201GB4

PETRIMES MODULE PSRK

Individual pool sizes by rank where n is a random variable

UAI C5049902	Do you want to store on DB?	>	Y	
PLAY Paleozoic Marine Structural Gas	Do you want to use MPRO output?	>	Y	
Assessor Peter Hannigan	Minimum and maximum pool ranks?	>	1	21
Geologist Peter Hannigan	Do you use lognornal assumption?	>	Y	
Remarks Kandik Assessment Project	Do you want to use PPSD output?	>	Y	
Run date Mon., Feb. 8, 1999, 12:26 p.m.				

User supplied parameters

A) Basic information

Type of resource	=	Gas in-place
System of measurement	=	S.I.
Unit of measurement	=	M cu m (19)

B) Lognormal pool size distribution

Summary	mu = 7.1591	MEAN = 1993.1	
Statistics	sig. sq. = .87672	S.D. = 2360.8	
Upper percentiles	99.99% = 39.521	60.00% = 1014.2	15.00% = 3393.2
	99.00% = 145.60	55.00% = 1143.0	10.00% = 4268.5
	95.00% = 275.60	50.00% = 1285.7	8.00% = 4791.9
	90.00% = 387.27	45.00% = 1446.3	6.00% = 5512.9
	85.00% = 487.17	40.00% = 1629.9	5.00% = 5998.1
	80.00% = 584.66	35.00% = 1844.3	4.00% = 6622.9
	75.00% = 683.70	30.00% = 2100.8	2.00% = 8796.1
	70.00% = 786.86	25.00% = 2417.8	1.00% = 11354.
	65.00% = 896.31	20.00% = 2827.4	.01% = 41827.

C) Number of pools distribution

Lower Support	=	0	
Upper Support	=	39	
Expectation	=	9.68	
Standard Deviation	=	6.07	

D) Pool sizes by rank

Po	ol rank	Distr	ibution			Pool rank	Distri	bution		
1	MEAN = 5932.0	S.D. =	4618.2	P(N>=r) =	.98716	12 MEAN = 792.04	S.D. =	409.63	P(N>=r) =	.35780
	99% = 584.13	75% =	3061.1	10% =	11013.	99% = 125.31	75% =	482.03	10% =	1345.7
	95% = 1309.8	50% =	4838.8	5% =	14101.	95% = 226.11	50% =	738.86	5% =	1542.8
	90% = 1868.4	25% =	7423.9	1% =	23048.	90% = 304.94	25% =	1041.5	1% =	1948.3
2	MEAN = 3379.7	S.D. =	2093.3	P(N>=r) =	.95184	13 MEAN = 727.98	S.D. =	375.17	P(N>=r) =	.31176
	99% = 342.55	75% =	1905.1	10% =	6012.4	99% = 118.75	75% =	444.45	10% =	1235.7
	95% = 762.48	50% =	3017.3	5% =	7223.8	95% = 211.82	50% =	677.86	5% =	1417.6
	90% = 1116.3	25% =	4400.8	1% =	10233.	90% = 283.80	25% =	955.27	1% =	1791.1
3	MEAN = 2481.1	S.D. =	1452.2	P(N>=r) =	.89747	14 MEAN = 671.41	S.D. =	345.14	P(N>=r) =	.26813
	99% = 260.61	75% =	1414.4	10% =	4368.9	99% = 112.61	75% =	410.95	10% =	1139.0
	95% = 557.36	50% =	2270.3	5% =	5140.3	95% = 198.70	50% =	624.01	5% =	1307.6
	90% = 815.06	25% =	3279.4	1% =	6928.6	90% = 264.62	25% =	879.36	1% =	1653.7
4	MEAN = 1996.1	S.D. =	1137.5	P(N>=r) =	.83296	15 MEAN = 621.48	S.D. =	318.77	P(N>=r) =	.22705
	99% = 220.44	75% =	1143.2	10% =	3496.3	99% = 106.95	75% =	381.26	10% =	1053.6
	95% = 455.29	50% =	1845.5	5% =	4071.2	95% = 186.81	50% =	576.56	5% =	1210.7
	90% = 659.20	25% =	2656.1	1% =	5352.5	90% = 247.41	25% =	812.44	1% =	1532.8
5	MEAN = 1683.5	S.D. =	941.39	P(N>=r) =	.76518	16 MEAN = 577.42	S.D. =	295.48	P(N>=r) =	.18884
	99% = 195.97	75% =	970.10	10% =	2935.0	99% = 101.80	75% =	355.09	10% =	978.23
	95% = 393.85	50% =	1565.1	5% =	3396.7	95% = 176.15	50% =	534.83	5% =	1124.9
	90% = 563.97	25% =	2245.7	1% =	4400.1	90% = 232.08	25% =	753.41	1% =	1425.9
6	MEAN = 1460.6	S.D. =	803.73	P(N>=r) =	.69783	17 MEAN = 538.55	S.D. =	274.83	P(N>=r) =	.15393
	99% = 178.97	75% =	848.60	10% =	2534.3	99% = 97.147	75% =	332.11	10% =	911.45
	95% = 351.95	50% =	1362.4	5% =	2921.4	95% = 166.65	50% =	498.17	5% =	1048.9
	90% = 498.80	25% =	1948.5	1% =	3748.3	90% = 218.53	25% =	701.34	1% =	1331.0
7	MEAN = 1291.0	S.D. =	699.97	P(N>=r) =	.63274	18 MEAN = 504.26	S.D. =	256.46	P(N>=r) =	.12273
	99% = 166.18	75% =	757.18	10% =	2228.9	99% = 92.972	75% =	311.95	10% =	852.23
	95% = 320.96	50% =	1206.6	5% =	2562.6	95% = 158.22	50% =	466.00	5% =	981.29
	90% = 450.60	25% =	1719.5	1% =	3266.9	90% = 206.58	25% =	655.38	1% =	1246.5
8	MEAN = 1155.4	S.D. =	618.12	P(N>=r) =	.57084	19 MEAN = 473.97	S.D. =	240.08	P(N>=r) =	.95563E-01
	99% = 155.96	75% =	684.39	10% =	1985.6	99% = 89.235	75% =	294.27	10% =	799.64
	95% = 296.55	50% =	1081.1	5% =	2278.9	95% = 150.76	50% =	437.74	5% =	921.14
	90% = 412.65	25% =	1535.2	1% =	2892.6	90% = 196.04	25% =	614.79	1% =	1171.1
9	MEAN = 1043.2	S.D. =	551.53	P(N>=r) =	.51254	20MEAN =	447.18 S.D.	=	225.43P(N	>=r) =
	99% = 147.28	75% =	623.56	10% =	1785.2	.72573E-01				
	95% = 276.11	50% =	976.31	5% =	2046.9	99% = 85.892	75% =	278.75	10% =	752.86
	90% = 380.97	25% =	1382.2	1% =	2590.8	95% = 144.15	50% =	412.89	5% =	867.48
10	MEAN = 947.61	S.D. =	496.21	P(N>=r) =	.45783	90% = 186.75	25% =	578.88	1% =	1103.6
	99% = 139.50	75% =	570.80	10% =	1616.3	21 MEAN = 423.43	S.D. =	212.31	P(N>=r) =	.53694E-01
	95% = 258.05	50% =	886.39	5% =	1852.4	99% = 82.898	75% =	265.08	10% =	711.18
	90% = 353.19	25% =	1252.1	1% =	2340.8	95% = 138.28	50% =	390.98	5% =	819.53
11	MEAN = 864.73	S.D. =	449.53	P(N>=r) =	.40638	90% = 178.54	25% =	547.05	1% =	1043.1
	99% = 132.22	75% =	523.97	10% =	1471.4					
	95% = 241.50	50% =	807.93	5% =	1686.4					

19252

=

PETROLEUM RESOURCE ASSESSMENT OF THE KANDIK BASIN, YUKON TERRITORY, CANADA

PETRIMES MODULE PSUM

Monte Carlo sum simulation pool size distribution

UAI C5049902
PLAY Paleozoic Marine Structural Gas
Assessor Peter Hannigan
Geologist Peter Hannigan
Remarks Kandik Assessment Project
Run date Mon., Feb. 8, 1999, 12:30 p.m.

User supplied parameters

Do you want to store in data base?	>	Y
Oil (o) or gas (g)?	>	G
British or S.I. unit of measurement?	>	Si
Recoverable resources?	>	Ν
Do you want to use MPRO output?	>	Y
Do you assume lognormal distribution?	>	Y
Do you want to use PPSD output?	>	Y
Do you compute conditional potential?	>	Ν

A) Basic information

Type of resource	=	Gas in-place
System of measurement	=	S.I.
Unit of measurement	=	M cu m (19)

B) Lognormal pool size distribution

Summary	mu= 7.1591	MEAN =	1993.1
Statistics	sig. sq.= .87672	S.D. = 2360.8	
Upper percentiles	99.99% = 39.521	60.00% = 1014.2	15.00% = 3393.2
	99.00% = 145.60	55.00% = 1143.0	10.00% = 4268.5
	95.00% = 275.60	50.00% = 1285.7	8.00% = 4791.9
	90.00% = 387.27	45.00% = 1446.3	6.00% = 5512.9
	85.00% = 487.17	40.00% = 1629.9	5.00% = 5998.1
	80.00% = 584.66	35.00% = 1844.3	4.00% = 6622.9
	75.00% = 683.70	30.00% = 2100.8	2.00% = 8796.1
	70.00% = 786.86	25.00% = 2417.8	1.00% = 11354.
	65.00% = 896.31	20.00% = 2827.4	.01% = 41827.

C) Number of pools distribution

Lower Support	=	0
Upper Support	=	39
Expectation	=	9.68113
Standard Deviation	=	6.06573

D) Summary statistics for 4,000 simulations

Play Resource	(Bcu	m)
Minimum	=	.0000000E+00
Maximum	=	88.45324
Expectation	=	19.64719
Standard Deviation	=	14.26852

Empirical distribution

Greater than	Play	Greater than	Play	Greater than	Play
percentage	potential	percentage	potential	percentage	potential
100.00	00000E+00	55.00	15.118	10.00	
95.00	2.0462	50.00	16.913	8.00	41.636
90.00	3.7767	45.00	18.805	6.00	
85.00	5.2121	40.00		5.00	
80.00	6.7709	35.00		4.00	47.935
75.00		30.00		2.00	
70.00	10.083	25.00	27.924	1.00	63.176
65.00	11.639	20.00	31.190	.01	87.401
60.00	13.520	15.00		.00	

User supplied parameters

PETRIMES MODULE PSUM

Monte Carlo sum simulation pool size distribution

UAI C5069902	Do you want to store in data base?	>	Y
PLAY All oil plays	Oil (o) or gas (g)?	>	Ο
AssessorPeter Hannigan	British or S.I. unit of measurement?	>	Si
Geologist Peter Hannigan	Recoverable resources?	>	Ν
Remarks Kandik Hydrocarbon Assessment Project	Do you compute conditional potential?	>	Ν
Run date Wed., Feb. 10, 1999, 9:25 a.m.			

A) Basic information

Type of resource	=	Oil in-place
System of measurement	=	S.I.
Unit of measurement	=	M cu m (19)

B) Play potential distribution

) They potential distinc	Julion							
Summary	MEAN	=	35.356	S.D. =	26.360			
Statistics	M cu m							
Upper percentiles	100.00%	=	.26049	55.00% =	22.331	8.00%	=	79.421
	99.00%	=	2.6692	50.00% =	25.778	6.00%	=	83.338
	95.00%	=	6.1935	45.00% =	30.255	5.00%	=	85.769
	90.00%	=	8.2957	40.00% =	35.876	4.00%	=	88.858
	85.00%	=	10.235	35.00% =	41.825	2.00%	=	95.461
	80.00%	=	12.090	30.00% =	48.267	1.00%	=	100.97
	75.00%	=	13.848	25.00% =	54.705	.01%	=	130.86
	70.00%	=	15.603	20.00% =	61.714	.00%	=	133.53
	65.00%	=	17.592	15.00% =	68.121			
	60.00%	=	19.649	10.00% =	76.017			
Summary	MEAN	=	22.781	S.D. =	22.666			
Statistics	M cu m							
Upper percentiles	100.00%	=	.00000E+00	45.00% =	19.036	8.00%	=	58.894
	80.00%	=	3.2428	40.00% =	22.360	6.00%	=	65.001
	75.00%	=	5.3183	35.00% =	25.746	5.00%	=	68.595
	70.00%	=	7.5177	30.00% =	29.313	4.00%	=	71.985
	65.00%	=	9.5438	25.00% =	33.722	2.00%	=	84.207
	60.00%	=	11.822	20.00% =	39.023	1.00%	=	94.959
	55.00%	=	14.124	15.00% =	45.287	.01%	=	170.86
	50.00%	=	16.507	10.00% =	54.242	.00%	=	184.55
) Number of plays dis	tribution		D)	Summary statistics f	or 4,000 simu	ulations		

C) Number of plays distribution			D) Summary statistics for 4,000 simulations			
Lower Support	=	2	Basin Resource	(M	cu m)	
Upper Support	=	2	Minimum	=	1.004136	
Expectation	=	2.00000	Maximum	=	230.8910	
Standard Deviation	=	.00000	Expectation	=	59.07602	
			Standard Deviation	=	35.11600	

Empirical distribution

Greater than	Basin	Greater than Basin	Greater than Basin
percentage	potential	percentage potential	percentage potential
100.00	1.0041	55.0048.811	8.00 113.08
99.00	6.6484	50.0053.735	6.00 119.34
95.00	12.995	45.0058.499	5.00123.39
90.00		40.0063.556	4.00128.82
85.00		35.0068.987	2.00141.76
80.00		30.0075.052	1.00158.26
75.00	31.401	25.00	.01228.51
70.00		20.0088.392	.00230.65
65.00		15.0096.063	
60.00		10.00 107.81	

PETRIMES MODULE PSUM

Monte Carlo sum simulation pool size distribution

UAI C5009902	Do you want to store in data base?	>	Y
PLAY All gas plays	Oil (o) or gas (g)?	>	G
Assessor Peter Hannigan	British or S.I. unit of measurement?	>	Si
Geologist Peter Hannigan	Recoverable resources?	>	Ν
Remarks Kandik Assessment Project	Do you compute conditional potential?	>	Ν
Run date Tue., Feb. 9, 1999, 11:18 a.m.			

User supplied parameters

A) Basic information

Type of resource	=	Gas in-place
System of measurement	=	S.I.
Unit of measurement	=	M cu m (19)

B) Play potential distribution

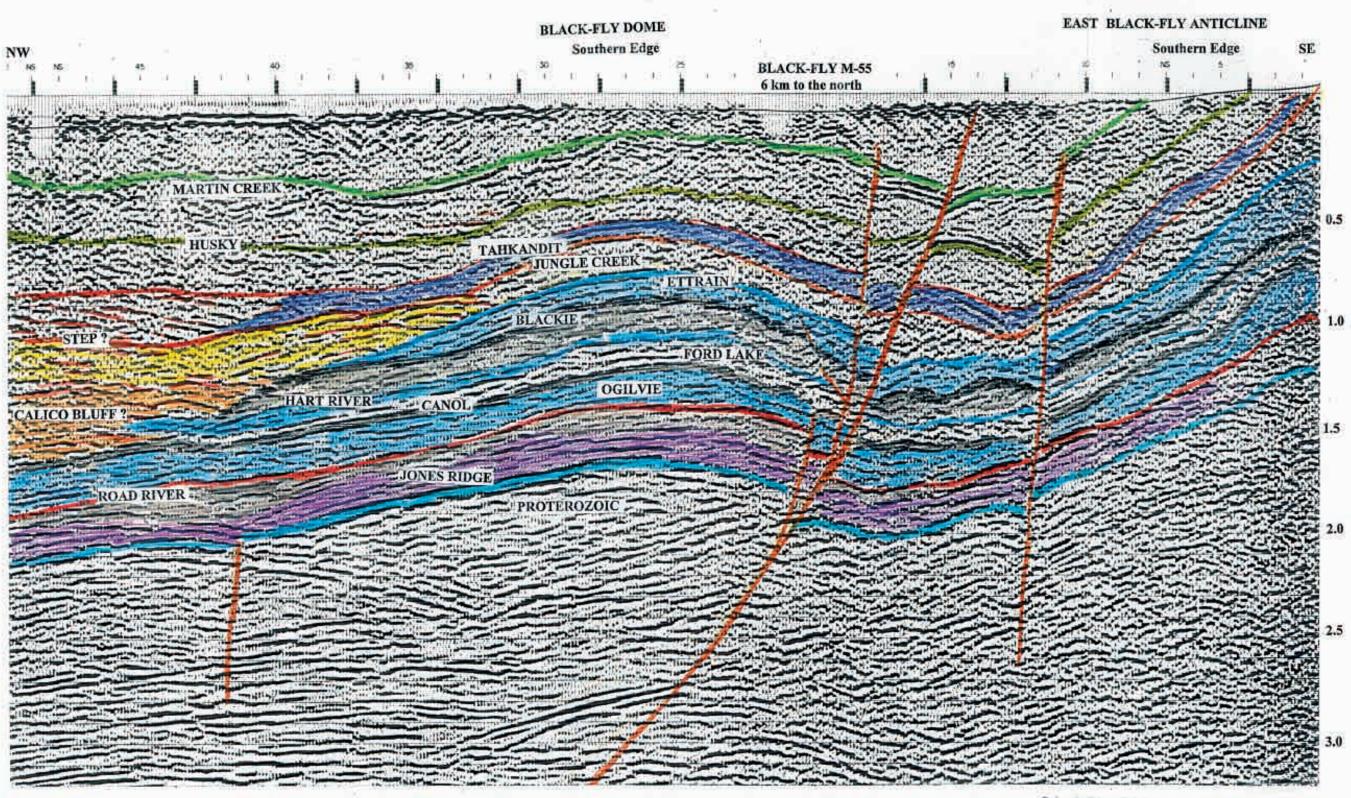
) May polential distrib	uuon					
Summary	MEAN =	8.0121	S.D. =	5.9917		
Statistics	B cu m					
Upper percentiles	100.00% =	.53164E-01	55.00% =	5.0684	8.00% =	18.034
	99.00% =	.58677	50.00% =	5.8628	6.00% =	18.966
	95.00% =	1.3841	45.00% =	6.8648	5.00% =	19.469
	90.00% =	1.8623	40.00% =	8.1568	4.00% =	20.131
	85.00% =	2.3044	35.00% =	9.5152	2.00% =	21.757
	80.00% =	2.7130	30.00% =	10.897	1.00% =	23.032
	75.00% =	3.1337	25.00% =	12.386	.01% =	29.965
	70.00% =	3.5305	20.00% =	13.987	.00% =	30.657
	65.00% =	3.9703	15.00% =	15.414		
	60.00% =	4.4512	10.00% =	17.255		
Summary	mean =	11.899	S.D. =	8.3877		
Statistics	B cu m					
Upper percentiles	100.00% =	.00000E+00	55.00% =	9.2813	10.00% =	23.576
	95.00% =	1.3471	50.00% =	10.346	8.00% =	24.782
	90.00% =	2.4531	45.00% =	11.517	6.00% =	26.703
	85.00% =	3.4132	40.00% =	12.676	5.00% =	27.741
	80.00% =	4.2462	35.00% =	13.871	4.00% =	29.131
	75.00% =	5.2509	30.00% =	15.184	2.00% =	32.587
	70.00% =	6.2718	25.00% =	16.898	1.00% =	37.087
	65.00% =	7.1735	20.00% =	18.813	.01% =	50.187
	60.00% =	8.1729	15.00% =	21.016	.00% =	52.640

APPENDIX 3: OUTPUT DATA FOR KANDIK HYDROCARBON ASSESSMENTS

Summary	mean =	19.647	S.D. =	14.269		
Statistics	B cu m					
Upper percentiles	100.00% =	.00000E+00	55.00% =	15.118	10.00% =	39.259
	95.00% =	2.0462	50.00% =	16.913	8.00% =	41.636
	90.00% =	3.7767	45.00% =	18.805	6.00% =	44.377
	85.00% =	5.2121	40.00% =	20.708	5.00% =	46.125
	80.00% =	6.7709	35.00% =	22.870	4.00% =	47.935
	75.00% =	8.3232	30.00% =	25.281	2.00% =	56.281
	70.00% =	10.083	25.00% =	27.924	1.00% =	63.176
	65.00% =	11.639	20.00% =	31.190	.01% =	87.401
	60.00% =	13.520	15.00% =	34.899	.00% =	88.348

C) Number of plays distribution

D) Summary statistics for 4,000 simulations


Lower Support	=	3	Basin Resource:	(B cu m)	
Upper Support	=	3	Minimum	=	3.575542
Expectation	=	3.00000	Maximum	=	127.3692
Standard Deviation	=	.00000	Expectation	=	39.82506
			Standard Deviation	=	17.71990

Empirical distribution

Greater than	Basin	Greater than	Basin	Greater than	Basin
percentage	potential	percentage	potential	percentage	potential
100.00	3.5755	55.00		10.00	63.604
99.00		50.00		8.00	66.507
95.00	14.364	45.00		6.00	69.935
90.00	18.606	40.00	42.599	5.00	72.304
85.00	21.788	35.00	45.007	4.00	74.742
80.00		30.00	47.562	2.00	81.795
75.00		25.00		1.00	
70.00		20.00	53.837	.01	125.89
65.00	31.304	15.00	57.578	.00	127.22
60.00					

SEISMIC LINE C-3 INEXCO OIL COMPANY 1973 INTERPRETATION NATIONAL ENERGY BOARD 1999

Seismic Line C-3 Inexco Oil Company 1973