

YUKON MICROPLASTICS IN FRESHWATER STATE OF SCIENCE REVIEW AND

SAMPLING PROGRAM – PHASE 1

FINAL

July 2021

Prepared for:

WATER RESOURCES BRANCH

ENVIRONMENT YUKON

CORE GEOSCIENCE SERVICES INC.

Report prepared by:

Catherine Henry

Catherine Henry, M.Sc., EP

JULY 9, 2021

DATE

Report prepared by:

G. Sruth

JULY 9, 2021

Date

Report prepared by:

David Krug, B.Sc. Environmental Scientist

Sruthee Govindaraj, B.Sc.

Environmental Scientist

Date

EXECUTIVE SUMMARY

Microplastics (MP) in water and aquatic ecosystems are a growing concern for which there are little data, especially within freshwater systems. Currently, there are no standardized protocols for MP sampling (other than for microbeads) and quantification in Canada. Core Geoscience Services (CoreGeo) was retained by Yukon Government's Water Resource Branch (WRB) to conduct a literature review, and design and execute a pilot sampling program for MP in freshwater in winter, under ice.

Literature indicates that for surface water, techniques that allow for the collection of large volumes should be utilized, including volume reducing techniques such as filtration and sieving. The use of net trawls is not practical for all sampling scenarios and the standard mesh sizes used for these technique limits the detection of MP particles to the largest size range. Recommendations for mitigating cross contamination include using glass and metal equipment, avoiding the use of synthetic textile during sampling, cleaning surfaces with 70% ethanol and washing with acid followed by ultrapure water, filtering all working solutions, using procedural blanks and replicates to control for airborne contamination, keeping samples covered, and handling samples in a clean air environment when possible.

Based on the findings of the literature review, discussions with laboratories, and environmental conditions, a pilot study was designed to sample for MP in the Yukon River upstream of the Takhini River confluence. Samples were collected on March 24, 2021, using two different methods. Grab samples (total of 12) were obtained by pouring 100L of Yukon River water through a set of two sieves (8" brass 45µm and 500µm). Filter samples (total of 5) were obtained using a Geotech SS Geosub submersible pump and controller to pump 100L of Yukon River water through an in-line 0.45µm high-capacity groundwater filter. For both methods, QAQC samples (blanks and controls) were also collected. Four different laboratories and/or methods were used for sample analysis. Particle count was done though microscopy at the WRB laboratory and by ALS Laboratories (ALS). Particle size distribution was analyzed by ALS, University of British Columbia (UBC) and GR Petrology Consultants Inc. (GR Petrology) and elemental composition was conducted by GR Petrology.

Results show that MP are likely present in the Yukon River downstream of Whitehorse. Since sampling was conducted during winter conditions (under ice), atmospheric deposition is unlikely to be the main source of MP in the Yukon River. However, as indicated by QAQC samples results, it is extremely difficult to avoid contamination of the samples, or near impossible, and it is likely that atmospheric deposition has introduced contamination during sampling even though stringent measures were taken to avoid contamination, both in the field and in the lab. Both sampling methods tested presented some challenges, particularly for winter sampling. Apart from trying to prevent water from freezing in the sieves or filters, one of the biggest challenges is to prevent contamination as MP are omnipresent in the environment. MP were found in the blanks and in the control samples, despites numerous precautions to prevent contamination. Another challenge is with laboratory analyses and differentiating MP from other particles. There is currently no standard analytical method, and results from different labs are difficult to compare. The UBC low level particle size

analysis does not target MP specifically and can therefore not provide a count or density. Similarly, the particle size distribution and elemental breakdown provided by GR Petrology did not target MP and likely detected non-plastic particulates, meaning that MP presence can only be inferred, and a total MP count is not obtainable.

Given the challenges encountered using sieves and the pump and filters, and based on the particle count results obtained from ALS, it is recommended that 1L grab samples be used as the sampling technique in the next phase of the project to reduce potential contamination, and that a larger number of replicates is collected to compensate for the greater variability in smaller sample volumes. To better understand MP sources and fate in the environment, samples should be collected in additional locations including upstream and downstream of communities, storm sewers and water treatment plant discharge. Pristine lakes and dustfall samples should also be collected to understand background concentrations.

LIST OF ACRONYMS

°C	degrees Celsius
AS	Analytical Sensitivity
ATR	Attenuated Total Reflectance
BV	Bureau Veritas
CYFN	Council of Yukon First Nations
EDS	Elemental Spectroscopy
FTIR	Fourier-Transform Infrared Spectroscopy
GCMS	Gas Chromatography-Mass Spectrometry
HDPE	High Density Polyethylene
MP	Microplastic
MPP/L	Microplastic Particles per Liter
PE	Polyethylene
PET	Polyethylene Terephthalate
PP	Polypropylene
PPE	Personal Protective Equipment
PS	Polystyrene
PSD	Particle Size Distribution
PVC	Polyvinyl Chloride
SEM	Scanning Electron Microscope
TGA	Thermogravimetric Analyzer
UBC	University of British Columbia
UTM	Universal Transverse Mercator
WRB	Water Resources Branch (Yukon Government)
XRD	Crystalline Structure Determination
YG	Yukon Government

TABLE OF CONTENTS

1		1
1.1	BACKGROUND	1
1.2	Objectives	1
2	LITERATURE REVIEW	1
2.1	MICROPLASTIC OCCURRENCE IN FRESH WATER	2
2.2	Sampling Methods	3
2.3	LABORATORY PREPARATION AND ANALYSIS	4
2.3.1 2.3.2	Filtration and Sieving Digestion	
2.3.3	Spectroscopy and Polymer Identification	5
2.3.4	Sample Preparation and Quality Assurance and Quality Control	5
2.4	SUMMARY OF FINDINGS, RECOMMENDATIONS AND BEST PRACTICES	7
3	PILOT SAMPLING PROGRAM	8
3.1	Methods	8
3.1.1	Sample Collection	8
3.1.2	Sample Analysis	16
3.2	FINDINGS	17
2 2 1		
5.2.1	Sampling Methodology	
3.2.1 3.2.2	Sampling Methodology Laboratory Results	
3.2.1 3.2.2 4	Sampling Methodology Laboratory Results Discussion	
3.2.1 3.2.2 4 5	Sampling Methodology Laboratory Results Discussion Recommendations and Conclusion	

LIST OF TABLES

Table 2-1: Summary of Microplastic Occurrence in Canadian Freshwater Systems	2
Table 3-1: In-situ Parameters, Yukon River upstream of Takhini River Confluence, March 24, 202110	0
Table 3-2: Number of beads per 1L deionized water bottle sample for each laboratory. 10	6
Table 3-3: Advantages and Challenges of the two Sampling Methods Tested	8
Table 3-4: Microscopy Particle Count Results 18	8
Table 3-5: Particle Size Data, ALS 22	2
Table 3-6: Particle Size Data, BV – UBC	2
Table 3-7: Particle Size Data, Sieve Samples, BV - GR Petrology	2
Table 3-8: Particle Size Data, Filter Samples, BV - GR Petrology 23	3
Table 3-9: Elemental Composition of Sieve Samples, BV - GR Petrology	5
Table 3-10: Elemental Composition of Filter Samples, BV - GR Petrology	6

LIST OF FIGURES

Figure 3-1: Sampling Location	. 8
-------------------------------	-----

LIST OF PHOTOS

Photo 3-1: Sampling Location on the Yukon River, seen from the confluence of the Takhini River	9
Photo 3-2: Hole in the Ice for Sampling	9
Photo 3-3: Pouring Yukon River Water through Sieves1	1
Photo 3-4: Washing Sieves with Deionized Water1	1
Photo 3-5: Pump and Filter Setup1	2

Photo 3-6: In-line Filter	13
Photo 3-7: Filter Blank Processing with 100L Deionized Water in WRB's Laboratory	14
Photo 3-8: Filter Removed from Plastic Casing using Hot Blade	15
Photo 3-9: Microplastic Filament observed under WRB's Microscope	20
Photo 3-10: Microplastic Particle observed under WRB's Microscope	20
Photo 3-11: Fluorescing Particles Observed at ALS Laboratory	21
Photo 3-12: Examples of particles observed by GR Petrology, showing crystalline structure and diate	oms 27

LIST OF APPENDICES

APPENDIX A: Laboratory Certificates of Analysis

ACKNOWLEDGEMENTS

We would like to thank the Water Resource Branch for their contribution in time, equipment, and facilities, Bruce Porter for his involvement and valuable help and Neil Hawkes of Council of Yukon First Nations for helping with field work.

We would also like to thank Bureau Veritas (BV) and ALS Laboratory (ALS) for providing discounted rates in support of this research project.

1 INTRODUCTION

Core Geoscience Services (CoreGeo) was retained by Yukon Government's Water Resource Branch (WRB) to conduct a literature review, and design and execute a pilot sampling program for microplastics in freshwater.

1.1 BACKGROUND

Microplastics (MP) in water and aquatic ecosystems are a growing concern for which there are little data, especially within freshwater systems (Koelmans et al., 2019). Preliminary screening conducted by high school student, Bruce Porter, in collaboration with WRB indicated the presence of MP within the Yukon Territory's (Yukon) watercourses.

Currently, there are no standardized protocols for MP sampling (other than for microbeads) and quantification in Canada. The most common methods of sampling and analysis involve using various sizes of mesh to isolate MP from aquatic systems, and analysis with different spectroscopy techniques to quantify MP (Masura et al., 2015; Health Canada, 2018). Commercial and research laboratories develop their own MP sampling and analysis protocols based on project design and need. Lack of standardized sampling techniques and analytical methods limits evidence accrual and research conducted in this matter to date. These limitations restrict legal and scientific advances that can be made to study and mitigate this emergent environmental hazard.

1.2 OBJECTIVES

Objectives for this study are to:

- Review literature for current microplastics research, sampling programs and methods;
- Design a pilot study to test sampling methods in freshwater in Yukon and compare lab analysis techniques;
- Conduct sampling and sample analyses; and
- Provide recommendations for a sampling program for microplastics in Yukon.

2 LITERATURE REVIEW

Microplastics (MP), defined as any plastic polymer particle ranging in size from 50-5000µm (0.05-5mm) (World Health Organization, 2019), are quickly becoming one of the most ubiquitous forms of anthropogenic pollution present in almost every natural system on the planet (Smith and Rochman, 2021). Since the coining of the term "microplastics" in 2004, research has continuously increased our understanding of the truly omnipresent nature of these particles, leading the United Nations to declare microplastics one of the most ominous threats to the environment, second only to climate change (Smith and Rochman, 2021). Research is still needed to understand the full extent to which microplastics are polluting natural systems (marine, freshwater, groundwater, soil, air), as well as the impacts of microplastics on human health. The Government of Canada is set to invest \$2.3 million in microplastic based research in Canada with a specific focus on assessing the impacts on human

health (Pawson 2020). This initiative comes as part of Canada's goals for zero plastic waste by 2030 (Pawson 2020).

To date, microplastic quantification in Yukon freshwater systems has been limited to the work conducted by Bruce Porter, a high school student from Whitehorse, YT. Bruce's novel study looked to assess the source and quantity of microplastic pollution in the Yukon River (Porter, 2019). Bruce determined that the dominant source of microplastics in the Yukon River is via atmospheric deposition, and that microplastics were predominantly classified as microfibers (Porter, 2019). This triggered further questions about presence, source and fate of MP in the environment, which can only be assessed reliably through standards protocols and methods. This forms the basis of the present study.

2.1 MICROPLASTIC OCCURRENCE IN FRESH WATER

The occurrence and distribution of MP in freshwater systems is poorly understood compared to marine systems, which have been more widely studied for MP pollutants (Duis and Coors 2016). Current information available suggests that MP concentration in fresh water is comparable to marine environments (Li et al. 2018). Variation in MP concentration in freshwater is a result of location, human activity, natural conditions, and sampling approach (Li et al. 2018). In general, MP are not evenly distributed vertically or horizontally in the water column and their abundance decrease at greater distances from the source of their introduction (Rios and Balcer 2019). MP will settle out of the water column at different rates depending on their density, potential for accumulating a biofilm, and the prevailing water currents (Rios and Balcer 2019). Surface water sampling generally had the lowest concentration of MP, likely because surface water studies generally only targeted larger particle sizes, whereas smaller particles are the most abundant (Koelmans et al. 2019). Wastewater treatment is a dominant source of MP in freshwater, followed by surface runoff, atmospheric deposition, and direct waste disposal (Li et al. 2018). A summary of results from studies of MP in freshwater systems in Canada can be found in the table below (Table 2-1).

Source	Location	Sample Matrix	Plastic Occurrence	Notes/Methodology
Forest et al. 2019	Ottawa River, Ontario	Surface Water	0.02-0.41 particles/L	100μm sieve, 100L samples, Citizen Science samplers.
Vermaire et al. 2017.	Ottawa River, Ontario	Surface Water, Sediment	Grab sample: median 0.1 particles/L Manta trawl: mean 1.35 particles/m3 Sediment: mean 0.22 particle/g of sediment	100L grab samples, manta trawl, sediment samples.

Table 2-1: Summary	of Microplastic	Occurrence in	Canadian Fr	eshwater Systems

Source	Location	Sample Matrix	Plastic Occurrence	Notes/Methodology
Crew at al. 2020	Upper St. Lawrence River, Quebec	Sediment and Surface Water	Sediment: 65-7561 particles/kg dry weight (avg. 832).	Ponar grab sediment samples and 250mL was analyzed. 4 L acid-washed plastic jugs were used to collect water at a depth of 0- 5 cm a total of 25 times to filter 100 L of water through a new piece of 100 mm nylon mesh.
Hendrickson et al. 2018	Lake Superior, Canada	Surface Water	37 000 particles/km2	Highest concentrations on harbors and estuaries. Most common form of plastic was fibers.
Anderson et al. 2017	Lake Winnipeg, Manitoba, Canada	Surface Water	1.93x105 particles/km2	Collection cut off size 333μm.
Ballent et al. 2016	Lake Ontario, Canada	Nearshore Sediment	760 particles/kg sediment	Methodology Unknown.
Mason et al. 2016	Lake Michigan	Surface Water	~17,000 particles/km2	Manta Trawl. Dominated by particles <1mm
Eriksen et al. 2013	Laurentian Great Lakes	Surface Water	Average of 43,000 particles/km2	Manta trawl with 333µm mesh net.
Bujaczek et al. 2021	North Saskatchewan River, Alberta, Canada	Surface Water	Mean= 26.3 particles/m3 (4.6 to 88.3 particles/m3)	Plankton net with 53µm mesh

2.2 SAMPLING METHODS

Various methods have been used to sample MP in freshwater systems. Surface water sampling can be conducted via volume reducing sampling methods including the use of pump and filter, neuston/plankton/manta net trawls, or by non-volume reducing sampling via grab samples (Li et al., 2018, Koelmans et al., 2019). Abigail et al. (2017) found that between grab samples and neuston nets, grab samples collected more MP as well as a smaller size range and greater proportion of non-fibrous plastic that neuston nets. Neuston, plankton, drift and manta net trawls with mesh sizes ranging from 80 to 333 µm with attached flow meters are recommended if this method is chosen (Rios and Balcer 2019, Anderson et al. 2017). It is common practice to use 333µm neuston net or 335µm manta net for sampling MP in marine environments (Marine Debris Program, 2015, Anderson et al. 2017, Duis, K., & Coors, A., 2016). A grab method is typically used for sediment samples and for coastal sediments (Duis, K., & Coors, A., 2016); however, it is acknowledged that bulk sampling or increased number of samples is required to not underrepresent the distribution of microplastics in these mediums (Duis, K., & Coors, A., 2016). Pumps, steel or polycarbonate sampling tubes, or buckets have been used to collect bulk water samples from the surface or from different depths in lakes and rivers (Rios and

Balcer, 2019). While the volume of individual samples was generally small (0.3-25 L), the samples were filtered through very fine mesh (2.7-63 mm), thus each sample retained a fairly large number of very small MP particles, including thin fibers (Rios and Balcer, 2019).

The detection limit of MP particles generally benefits from larger sample volumes, as larger volumes equal a higher chance of detecting particles (Koelmans et al., 2019, Prata et al., 2019). The detection limit is also impacted by the size of particle being analyzed; i.e., larger particles (>300 μ m) have a higher likelihood of being detected than small particles (<100-300 μ m) (Koelmans et al., 2019). For example, the use of a neuston net is preferred when sampling large size MP that do require the use of a microscope to be observed, as a large volume of water can be sampled (Abigail et al., 2017). One article suggests using a 500 L minimum sample volume for surface water when looking for large particles, and more if smaller particles or sampling in remote locations (Koelmans et al., 2019).

2.3 LABORATORY PREPARATION AND ANALYSIS

A variety of methods and techniques have been employed for MP sample treatment prior to analysis. Some of these techniques will be discussed below in the context of sampling in freshwater systems. To separate microplastics from other particulates in samples, filtering, sieving, density separation, and digestion methods are commonly used (Duis, K., & Coors, A.,2016).

2.3.1 Filtration and Sieving

Filters and sieves can be used to process samples prior to analysis. Filters and sieves come in a large variety of pore sizes. Small pores can become clogged quickly with organic matter, requiring the use of multiple sieving events, with increasingly smaller pore sizes (Prata et al., 2019). In samples that have larger microplastics, tweezers were used to remove particles from the sieves, but this is known to increase the likelihood of bias when counting microplastics (Duis, K., & Coors, A., 2016). The use of sieves with small pore sizes is recommended as they capture more particles than simply using visual counting methods (Duis, K., & Coors, A., 2016).

2.3.2 Digestion

The use of a digestion step is recommended for sample preparation when sampling surface and wastewater to digest and remove any organics, separating them from inorganic (plastic) particles (Koelamans et al., 2019). Potassium hydroxide (KOH) or enzymes have been demonstrated to be acceptable methods (Koelamans et al., 2019). Another common method used is wet peroxide oxidation (WPO) in the presence of Fe(II) catalyst to digest organics (Marine Debris Program, 2015). In general, digestion protocols should have the least impact (i.e., degradation) on plastic polymers (Prata et al., 2019). Some polymers have low resistance to acids used in digestion and may be degraded (Prata et al., 2019).

Digestion using alkali substances may damage colour and leave oily residue (Prata et al., 2019). KOH (10% at 60°C overnight) is a good choice for digestions; however, KOH can still cause discolouration

and degradation of some plastic polymers (Prata et al. 2019). Hard parts (bone) and fats do not fully digest with Alkali digestion (Prata et al. 2019).

The use of oxidizing agents such as hydrogen peroxide (H_2O_2) are a good choice that tends to have less impact on the degradation of plastic but can still cause some discolouration (Prata et al., 2019). The use of high temperatures can help H_2O_2 digestion occur faster and is more effective in the removal of organic matter (Prata et al., 2019).

2.3.3 Spectroscopy and Polymer Identification

A variety of high-power spectroscopy techniques such as FTIR (Fourier-transform Infrared Spectroscopy), Raman spectroscopy, pyrolysis-GCMS (gas chromatography mass spectrometry) or TGA-GCMS (thermogravimetric analyzers- gas chromatography mass spectrometry), ATR-mFT-IT (attenuated total reflectance with micro-Fourier transform infrared), and Scanning electron microscope (SEM) techniques are recommended for MP analysis and polymer identification (Koelmans et al., 2019, Rios and Balcer, 2019, Prata et al., 2019). These spectroscopy techniques are powerful but laborious, leading to a need for subsampling of MP for identification. Subsampling should be avoided, if possible, but the practicality of sampling must be considered (Koelmans et al., 2019). The practice of manual sorting and counting MP particles has considerable bias compared to FTIR or Raman microscopy and is therefore discouraged when analyzing particles <300um (Koelmans et al.2019). ATR-mFT-IT is one of the most reliable methods of polymer ID that does not need chemical preparation (Rios and Balcer, 2019). Focal place array with FT-IR can be used but requires chemical preparation; mRAMAN spectroscopy is also recommended but can lead to interference from pigment spectra (Rios and Balcer 2019). Scanning electron microscope (SEM) is an alternative to qualitatively to assess MP presence (Rios and Balcer 2019). It is recommended that, coupled with visual inspection, 10% of MP 10-5000µm and all MP 20-100 µm should be assessed with FTIR or Raman methods (Prata et al. 2019).

2.3.4 Sample Preparation and Quality Assurance and Quality Control

2.3.4.1 Work Conditions and Clean Air Control

General working conditions and the use of clean air control are important considerations when sampling MP to reduce contamination from external sources. Airborne fibers are the most common source of contamination during the processing of samples in the lab and can result in an overestimation of MP abundance (Rios and Balcer, 2019). It is recommended that all sample handling following collections (i.e., during laboratory analysis) be done in a clean air cabinet or laminar flow cabinet (Koelmans et al., 2019, Prata et al., 2021). The use of a laminar air hood is preferred over the use of a fume hood, as laminar flow actively creates a clean air environment (Prata et al., 2021). When working with open sample bottles in the field and lab, the use of aluminum foil or glass lids covering samples can help in reducing air contamination to some extent (Prata et al., 2021). With the need for widespread MP sampling, the use of citizen science efforts has been suggested as a useful method for sample acquisition. The use of citizen science to support MP studies has not been validated and has

the possibility of creating considerable error and contamination to be introduced (Koelmans et al., 2019).

2.3.4.2 Materials and Equipment

Consideration for the type and treatment of all equipment used in MP sampling is also important for reducing the likelihood of external contamination. Bottles and all lab equipment used in sampling procedures should be properly rinsed (x3 rinses) prior to use, using filtered or distilled water (Koelmans et al., 2019, Prata et al., 2021). Beyond rinsing with distilled water, washing glassware overnight with a mild acid (or ethanol for metals) can be helpful in removing MP contamination (Prata et al., 2021).

Measures should be taken to avoid the use or exposure of synthetic clothing to samples. It is highly recommended that cotton lab coats or similar natural fiber clothing be worn when sampling and processing MP (Koelmans et al., 2019, Prata et al., 2021). It should be noted that cotton clothing can still release fibers that look very similar to MP fibers that can contaminate samples; if no polymer identification is conducted on fibrous particles, cotton particles may be mistaken for MP (Prata et al., 2021). For potential sources of contamination (gloves, lab coats, paper towel) the use of products with highly distinguishable colors is recommended (i.e., bright orange cotton fabrics), to help differentiate plastic and non-plastic materials (Prata et al., 2021). Some studies avoided the use of plastic or nitrile gloves while others still used them (Prata et al., 2021). For analysis using harsh chemicals, gloves and other PPE should always be used (Prata et al., 2021). Finally, sampling methods involving nets that utilize plastic mesh led to contamination issues, especially when thoroughly cleaning the nets (vigorous washing releases particles from the mesh) (Prata et al., 2021).

2.3.4.3 Contamination of Solutions and Filters

Solutions used for cleaning sampling materials can still be a source of contamination, even when using filtered or ultra-clean water, acids, and other detergents (Prata et al., 2021). This contamination can occur from contact with equipment, deposition from the air, or directly from origin or the solution (Prata et al., 2021). Filtration of these solutions prior to use can help prevent contamination (Prata et al., 2021). Glass filters are recommended to filter solutions but can still be contaminated due to an unclean working environment (Prata et al., 2021). This can be mitigated through heat treatment to clean glass filters at 450°C for 3 hours (Prata et al., 2021). When filters were not cleaned, MP quantities were overestimated (Prata et al., 2021).

2.3.4.4 Field, procedural and Clean Air Blanks/Controls

The use of control samples is highly recommended when conducting MP sampling. It is recommended that a minimum of three procedural blanks be used to develop a correction factor for sample results (Koelmans et al., 2019). Procedural blanks should follow the same procedure as samples and are only

useful in yielding results if the smallest size range of MP is analyzed (Prata et al., 2021). Laboratory blanks are also recommended where uncovered samples are left open in the lab environment to capture plastic deposition from the air (Prata et al., 2021).

2.3.4.5 Positive Control

The loss of MP particles from samples may occur during various steps of the sampling process, it is therefore recommended that losses be quantified using positive control samples (Koelmans et al., 2019). Positive control samples are "spiked" with known quantities of MP particles to assess the recovery rate of MP during sample analysis (Koelmans et al., 2019). These positive control samples should undergo the same sample analysis as all other samples to verify sufficiently high recovery rates of particles and develop a correction factor for MP loss during sample processing (Koelmans et al., 2019). If recoveries are low yet reproducible, the reported counts should be corrected for this incomplete recovery (Koelmans et al., 2019). The use of positive control samples is demonstrated in a study by Bujaczek et al. (2021), where samples were spiked with a variety of fluorescent microbeads of know sizes and quantities. Recovery of the spiked particles was then used to help determine the recovery rate of MP particles in the samples and correct for losses (Bujaczek et al., 2021).

2.4 SUMMARY OF FINDINGS, RECOMMENDATIONS AND BEST PRACTICES

The detection limit of MP particles generally benefits from larger sample volumes as more particles are captured and detected (Koelmans et al., 2019, Prata et al., 2019). It is recommended that the largest feasible sample volume be collected. For sampling surface water, sampling techniques that allow for large sample volumes to be collected are recommended, including volume reducing techniques such as filtration and sieving, or large volume grab sampling when feasible. Net trawls are not practical for all sampling scenarios and the standard mesh sizes used for these techniques limit the detection of MP particle to the largest size range.

Areas for improvement and innovation when conducting MP sampling include sample treatment, polymer identification, clean air conditions and the use of positive control samples (Koelmans et al., 2019). Recommendations for mitigating cross contamination include using glass and metal equipment, avoiding the use of synthetic textile during sampling, cleaning surface with 70% ethanol and washing with acid followed by ultrapure water, filtering all working solutions, using procedural blanks and replicates to control for airborne contamination, keeping samples covered as much as possible, and handling samples in a clean air environment when possible (Prata et al., 2019, Scopetani et al., 2020, Prata et al., 2021).

3 PILOT SAMPLING PROGRAM

Based on the findings of the literature review, discussions with laboratories and environmental conditions, a pilot study was designed to sample for microplastics in the Yukon River.

3.1 METHODS

3.1.1 Sample Collection

Field work was conducted on March 23rd and 24th, 2021 by a team consisting of Bruce Porter, WRB employee Devon O'Connor, Council of Yukon First Nations (CYFN) representative Neil Hawkes, and CoreGeo staff Sruthee Govindaraj, David Krug and Catherine Henry. Samples were collected from the Yukon River, just upstream of the Takhini River confluence at UTM coordinates 08V 490208 6744916 (see Figure 3-1; Photo 3-1). This location is regularly sampled by WRB for general chemistry but had yet to be sampled for MP.

The site was accessed by foot from the Takhini bridge boat launch. Gear was transported by snowmobile. Methods were tested on March 23rd during a 'dry run' and samples were collected on March 24th. Sampling was conducted under a mix of sun and clouds, calm to light winds and air temperature ranging from -14°C to -2°C. Snow was cleared from the sampling area and a hole was drilled through the ice using a battery powered ice auger (see Photo 3-2). The ice thickness was 44cm.

Figure 3-1: Sampling Location

Photo 3-1: Sampling Location on the Yukon River, seen from the confluence of the Takhini River

Photo 3-2: Hole in the Ice for Sampling

In-situ parameters were collected using a YSI Professional Plus multi-meter calibrated before the trip. Data are presented in Table 3-1.

Time	10:50
Temperature (°C)	0.0
pH (pH units)	8.11
Specific Conductance (µS/cm)	79.7
Dissolved Oxygen (%)	84.4
Dissolved Oxygen (mg/L)	12.38
Oxidation-Reduction Potential (mV)	79.9

Table 3-1: In-situ Parameters.	Yukon River upstre	am of Takhini River	[·] Confluence. March 2	4. 2021

3.1.1.1 Grab Samples

A 15L graduated metal bucket was used to measure and pour 100L of Yukon River water through a set of two sieves (8" brass 45µm and 500µm). The 500µm sieve was placed on top of the 45µm sieve to capture larger debris such as organic matter and ice (Photo 3-3). Deionized water, warmed using a camping stove, was used to melt the slush and ice that built up in the sieves by pouring through the sieve. The sieves were rinsed with warm deionized water, by holding the sieve at an angle and washing all particulate matter to one side. Particulate was then washed and collected into a high-density polyethylene (HDPE) bottles provided by the labs (Photo 3-4). A total of 12 samples were collected using this method: three destined for Bureau Veritas GR Petrology lab, three for Bureau Veritas University of British Columbia subcontracted lab, three for ALS Laboratory (ALS) and three for Bruce Porter for analysis. All bottles had approximately 10-20mL of water and particulate sample. Samples submitted to BV laboratory, due to lab protocols, were topped up with additional deionized water for a total volume of 1L in each bottle.

Photo 3-3: Pouring Yukon River Water through Sieves

Photo 3-4: Washing Sieves with Deionized Water

3.1.1.2 Filter Samples

A Geotech SS Geosub submersible pump and controller were used to pump Yukon River water through an in-line 0.45μ m high-capacity groundwater filter (Photos 3-5 and 3-6). Teflon tubing was used to minimize risks of plastic contamination from regular tubing. The pump was operated using a generator, which was placed downwind and well away from the sampling location. The pump head was placed 30 cm below the ice surface, the head screen size is not known but was estimated to be in the 150 to 200 µm range. For each sample, a total of 100L of Yukon River water was pumped through the filter. Pumping rates ranged from 122 Hz to 74 Hz; the pumping rate was adjusted down during sampling to prevent excessive pressure building in the system due to freezing. Once the 100L passed through the filters, the filters were capped and placed in a glass jar for submission to the laboratory. A total of five Yukon River samples were collected using this method. All filter samples were sent to BV GR Petrology lab for analysis as it is the only lab that accepts filters for analysis.

Photo 3-5: Pump and Filter Setup

Photo 3-6: In-line Filter

3.1.1.3 Snow Samples

Snow samples were collected from disturbed and undisturbed areas in the vicinity of the water sampling site. Disturbed areas were areas used by the field crew to work, walk, or where snowmobile tracks were found. Samples were melted using a camping stove and metal pot and transferred into 1L sampling HDPE bottles provided by the laboratories. Two 1L samples were collected from each area (disturbed and undisturbed) and manually counted in WRB's lab by Bruce Porter.

3.1.1.4 Quality Assurance and Quality Control

To minimize the risk of contamination from clothing fibers, the field crew wore 100% cotton coveralls during sampling. To minimize the risk of contamination through atmospheric deposition, open buckets and containers were covered with aluminum foil when not is use. Finally, to reduce the risk of contamination from sampling equipment, metal or glass containers and instruments were used where possible. Where plastic containers or instruments had to be used, they were triple rinsed with deionized water prior to use.

Blanks were prepared in WRB's lab with deionized water and HDPE sampling bottles provided by the analytical laboratories and brought out in the field on sampling day. Three unopened 1L bottles and three opened bottles were left at the sampling location during the sampling activities. The unopened bottles will help detect potential contamination from the bottles themselves or in the deionized water, while the open bottles could provide insight into atmospheric deposition. Upon return to WRB's lab, 100L of deionized water was passed through the sieves and collected in three 1L sampling bottles (sieve control). This control is aimed at detecting possible contamination from the sieves. One of each type of blank and control samples was sent to each lab.

For the pump and filter method, 100L of deionized water were pumped through the system using a new filter, and the filter was sent to the lab for analysis (Photo 3-7). The control was done in the WRB's lab. This will allow detection of contamination that may originate from the pump system. In addition, one blank filter was also sent for analysis to detect potential contamination form the filter itself or from handling it.

Photo 3-7: Filter Blank Processing with 100L Deionized Water in WRB's Laboratory

Once the filters were received at GR Petrology lab, the lab determined that they were unable to safely remove the filters from the plastic casing to analyze the membrane without risks of contamination; therefore, the filters were returned to CoreGeo to be opened. CoreGeo used a hot blade from a wood burning kit to melt the plastic and extract the filter membrane (Photo 3-8). This was done under the fume hood in the WRB's lab to minimize risks of contamination. Surfaces were wiped clean and

orange cotton suits were worn to further decrease the risk of contamination. Filter membranes were then individually wrapped in aluminum foil and sent back to GR Petrology lab for analysis. Because it is unknown if this method of opening the filter had the potential to introduce microplastics particles in the filter membrane, an additional unused filter was opened using the same method and sent for analysis, as quality control.

For samples that were processed in WRB's lab by Bruce Porter (see Section 3.1.2.3), two coffee filters were placed in petri dishes and left with the lid off in the lab for five hours while samples were processed. These were then observed for MP contamination, and none was found.

Photo 3-8: Filter Removed from Plastic Casing using Hot Blade

Spiked samples (positive controls) were prepared in WRB's lab using fluorescent microbeads obtained from Dr. Matthew Ross from MacEwan University, Edmonton, Alberta. Bruce Porter counted four colours of microbeads using a dissecting microscope at 10x magnification, and petri dish with a filter paper in it for each lab sample (See Table 3-2). There are variations in the number of coloured beads due to restraints of hand counting the beads under the microscope. The beads were washed into three 1L bottles of deionized water. One spiked sample bottle was sent to each of the three labs.

Bead Color	Size Range (µm)	# of beads/1L sample			
		BV (GR Petrology)	BV (UBC)	ALS	
Yellow	600-710	14	10	11	
Red	250-300	13	12	23	
Green	250-300	23	13	12	
Purple	125-150	9	15	19	
Total		59	50	65	

Table 3-2: Number of beads per 1L deionized water bottle sample for each laboratory.

3.1.2 Sample Analysis

Four different laboratories and/or methods were used for sample analysis.

3.1.2.1 Microscopy Particle Count

This method is available through ALS laboratories and is conducted at ALS Cincinnati. Samples are analyzed according to ALS SOP Micro-Fluor-001 for the detection of micro plastic particles using fluorescent tagging and static image analysis. With this method, fluorescent dye is added to the samples. After activation time, samples are filtered, and filters are viewed under the microscope. The fluorescent dye targets polymers like polyethylene, polypropylene, polystyrene and nylon though it cannot differentiate between them. Analytical Sensitivity (AS), ie the smallest amount of substance in a sample that can accurately be measured, is reported by ALS for each sample and is based on the volume and clarity of the sample. Particle sizing is performed using static image analysis of representative calibrated two-dimensional photomicrographs.

Manual count under a 10x magnification dissecting microscope was also conducted by Bruce Porter (Porter, 2019) using WRB's lab and repeated during this study for comparison. A total of three water samples and four snow samples were manually counted for MP under the microscope by Bruce Porter. Criteria used to identify MP were as follows (Marine & Environmental Research Institute, 2017):

- Small size (largest dimension ≤5mm);
- No cellular or organic structures visible;
- Fibers should be equally thick throughout their entire length; and
- Particles should exhibit clear and homogeneous color throughout.

The hot needle test can be used when unsure if a particle is plastic. To perform this, a small needle is heated until red, then touched to the particle. If the particle warps of shrivels, it is assumed to be plastic.

3.1.2.2 Low Level Particle Size Analysis

Low level particle size analysis is available at the University of British Columbia (UBC), through a BV subcontract. This analysis is done using a Elzone II 5390 instrument from Micromeritics, Inc. where a particle passes through an orifice and interrupts a small current; the size of the interruption is proportional to the size of the particle. This method does not specifically target plastics but provides a count of the very small particles that are suspended as a surrogate. This analysis is non-quantitative for the total amount of MP present.

3.1.2.3 XRD/EDS/Microscopy/PSD

This analysis is available through BV. For water samples, the sample is filtered using a 0.45 μ m filter upon arrival to BV lab and the particulate on the filter paper are forwarded to a petrology lab (GR Petrology Consultants Inc.) for X-ray diffraction (XRD; crystalline structure determination), EDS (elemental spectroscopy), PSD (particle size distribution) and scanning electron microscopy (SEM). Filter samples are directly forwarded to the petrology lab (GR Petrology). These analyses are non-quantitative for the total amount of MP present.

3.2 FINDINGS

3.2.1 Sampling Methodology

Both methodologies tested presented some advantages and challenges, summarized in Table 3-3. Additional challenges related to winter conditions were experienced with both methods. For grab samples, water freezing in the sieves was mitigated by pre-heating deionized water for rinsing. For filter samples, flow rates had to be reduced during sampling to counteract pressure created by water freezing in the filter and prevent filters from cracking. Should sampling be carried out at colder temperatures, it would be advisable to set up a heated shelter (such as an ice fishing shelter) to prevent freezing. Doing so would however require controls to determine if MP can originate from the shelter itself. Also of note, another sampling method was identified from the literature but was not retained for this pilot study due to its impracticality during winter conditions: plankton nets are commonly used for MP sampling, either dragged behind a boat or left in flowing water for a given duration. This method could be tested in summer conditions, however, should a standard sampling method be developed, it should be viable year-round for comparability of results.

Method	Advantages	Challenges
Grab Samples	 Requires less equipment Equipment is more affordable Easier to standardize and to deploy in remote locations Samples can be analyzed by several labs Quantitative analyses can be done Some lab analyses are more affordable Can be used for any volume of sample Can target different particle sizes by using sieves with different mesh size 	 Higher risk of contamination due to exposure to atmosphere during sieving process Need to bring larger amounts of deionized water in the field (proportional to number of samples being collected) Need warm deionized water during winter sampling Complete rinsing of sieves and buckets may be challenging
Filter Samples	 Closed system – minimal risk of contamination Less manipulation and associated risk for error Less physically labour intensive 	 Requires the use of a generator. Pump and controller are expensive Only one lab can analyze filters at this time and analysis is more expensive Analysis is non-quantitative Opening the filter casing can introduce contamination. Filters can fault in colder conditions. Particle size limited by pump screen size

Table 3-3: Advantages and Challenges of the two Sampling Methods Tested

3.2.2 Laboratory Results

Complete laboratory reports are available in Appendix A, while results are summarized below.

3.2.2.1 Particle Count

Microscopy particle count was conducted by Bruce Porter in the WRB lab and by ALS. Table 3-4 summarizes results in number of MP particle per litre (MPP/L). ALS reported results as MMP/L based on the sample size they received (10-75 mL), while the actual concentration is much less, given that 100L of Yukon River water was passed through the sieve, prior to transferring the samples into bottles. Results in Table 3-4 are therefore converted to account for the actual sample volume of 100 litres.

Table 3-4: Microscopy Pa	article Count Results
--------------------------	-----------------------

	Sample Volume (L.)	Bruce Porter (MPP/L)	ALS (MPP/L)
Trip Blank (unopened)	1	-	6.69
Trip Blank (opened)	1	-	17.39
Sieve Control	100	-	2.77
Spike Sample (65 MPP/L)	1	-	270
Yukon River Sample BP1	100	0.13	-
Yukon River Sample BP2	100	0.06	-
Yukon River Sample BP3	100	0.04	-

	Sample Volume (L.)	Bruce Porter (MPP/L)	ALS (MPP/L)
Yukon River Sample ALS1	100	-	7.09
Yukon River Sample ALS2	100	-	16.95
Yukon River Sample ALS3	100	-	36.93
Fresh Snow Sample S1	Melted to 1 litre	1	-
Disturbed Snow Sample S2	Melted to 1 litre	5	-
Fresh Snow Sample S3	Melted to 1 litre	1	=
Disturbed Snow Sample S4	Melted to 1 litre	6	-

Microplastics were found in all samples, by both microscopy methods reported by ALS and by Bruce Porter, including in river water, melted snow and in trip blanks. Results are generally higher from ALS laboratories than with the WRB microscope, indicating that the ability to detect microplastic particle maybe higher using fluorescent tagging. Analytical sensitivity reported by ALS, once converted back to the actual 100 litres sample volume is 0.0134 MPP/L All measurements reported by ALS were above the analytical sensitivity. The use of fluorescent tagging and static image analysis by ALS likely contributes to increased detection power. Photos 3-9 and 3-10 show examples of microplastics particles detected using WRB's dissecting microscope at 10x magnification while Photo 3-11 shows examples of fluorescing particles observed at ALS lab.

Based on ALS results, Yukon River samples contained 7.09 to 36.93 MPP/L (average 20.32 MPP/L), while the unopened trip blank contained 6.69 MPP/L, similar to the Yukon River sample with the lowest count. This indicates that MP particles were either present in the deionized water, in the air in the lab while preparing or analyzing the trip blanks or originated from the sampling bottle. The trip blank that was left open while sampling returned 17.39 MPP/L indicating the potential for atmospheric deposition during the sampling event. The sieve control sample returned a relatively low MP count (2.77 MPP/L) which suggests minimal contamination from the sieves themselves. 270 MPP were detected in the spike sample, compared to 65 MPP that were added (see Table 3-2), further indicating potential contamination in the deionized water, from the air in the lab or from the bottle.

The snow samples analyzed by Bruce Porter returned higher counts of MP in samples collected from disturbed areas versus undisturbed snow, suggesting MP may originate from clothing or equipment more than from atmospheric deposition. However, the small number of samples and of MP in each does not support robust conclusions and should be taken as preliminary observations.

Photo 3-9: Microplastic Filament observed under WRB's Microscope.

Photo 3-10: Microplastic Particle observed under WRB's Microscope.

Photo 3-11: Fluorescing Particles Observed at ALS Laboratory

3.2.2.2 Particle Size

Particle size data was reported differently by the different labs. Table 3-5 to Table 3-8 below summarize comparable metrics where possible, while complete results are included in Appendix A.

Table 3-5: Particle Size Data, ALS

	Field Blank Closed	Field Blank Open	Sieve Control	Sieve Sample 1	Sieve Sample 2	Sieve Sample 3	Spike Sample
>6.5<10µm (%)	80.0	23.1	2.4	1.7	0.8	1.2	3.3
>10<100µm (%)	0.0	69.2	85.5	84.0 84.2		89.7	91.8
>100<500µm (%)	20.0	7.7	11.1	13.8 14.4		8.6	3.3
>500µm<1mm (%)	0.0	0.0	1.0	0.6	0.6	0.4	0.0
>1<5mm (%)	0.0	0.0	0.0	0.0	0.0	0.1	1.5

Table 3-6: Particle Size Data, BV – UBC

	Field Blank Closed 2	Field Blank Open 2	Sieve Control 2	Sieve Sample 4	Sieve Sample 5	Sieve Sample 6	Spike Sample 2	
<10µm (%)	* Sample is	* Sample is	9.0	11.2	8.1	0.3	* Samplo is	
>10<100µm (%)	too clean to	too clean to close background	83.0	78.5	82.7	58.8	too clean	
>100µm (%)	close		close	8.0	10.3	9.2	40.9	to close
Mean (µm)	background solutions		64.62	65.38	66.78	89.48	background solutions	
Median (µm)	No report	No report	64.4	65.78	65.03	89.21	No report	
Minimum (µm)	for this	for this sample.	0.1	0.1	0.1	0.1	for this	
Maximum (µm)	sample.		200.98	196.85	200.98	170.2	sample.	

Table 3-7: Particle Size Data, Sieve Samples, BV - GR Petrology

	Field Blank Closed 1	Field Blank Open 1	Sieve Control 1	Sieve Sample 1	Sieve Sample 2	Sieve Sample 3	Spike Sample 1
<8µm (%)	98.4	99.4	92.0	83.4	89.4	39.4 84.6	
>8<128µm (%)	2.6	0.6	7.4	16.4	10.2	14.8	0.8
>128µm (%)	0.0	0.0	0.6	0.2	0.4	0.6	0.0
Maximum (µm)	32.52	19.52	196.48	182	276.34	204.42	30.29
Quartile 3 (µm)	0.79	0.42	0.85	4.48	2.55	4.42	0.71
Mean (µm)	0.85	0.47	3.05	6.42	4.84	6.6	0.68
Median (µm)	0.36	0.19	0.34	0.61	0.83	1.12	0.25
Quartile 1 (µm)	0.08	0.06	0.09	0.14	0.33	0.37	0.06
Minimum (µm)	0.01	0.07	0.01	0.01	0.01	0.02	0.01
Standard Deviation (µm)	2.22	1.35	13.5	16.37	17.24	18.89	1.86

	F1 - Yukon F2 - Yukon F3 - Yukon F4 - Yukon F5 - Yukon					F6 - Blank	F7 - Filter	
	River	River	River	River	River	Filter	Control	
<8µm (%)	89.0	87.6	86.8	75.0	91.8	98.6	93.8	
>8<128µm (%)	11.0	12.2	13.2	24.6 8.2		1.4	6.2	
>128µm (%)	0.0	0.2	0.0	0.4	0.0	0.0 0.0		
Maximum (µm)	66.61	338.01	92.58	274.26	90.53	27.85	62.54	
Quartile 3 (µm)	3.72	4.63	4.73	8.01	3.03	0.71	2.11	
Mean (µm)	3.14	4.92	4.15	7.86	2.93	0.86	2.11	
Median (µm)	dian (µm) 1		2.07	2.61	1.14	0.28	0.71	
Quartile 1 (µm)	0.22	1.19	0.73	0.86	0.36	0.13	0.29	
Minimum (µm)	0.02	0.06	0.05	0.03	0.02	0.01	0.03	
Standard Deviation (µm)	5.74	16.28	7.19	19.69	6.35	2.49	4.5	

Table 3-8: Particle Size Data, Filter Samples, BV - GR Petrology

Particle size distribution from both ALS and UBC indicates that most of the particles are in the 10µm to 100µm range for all samples, except for the closed field blank, which mostly contained smaller particles ($6.5\mu m - 10\mu m$). UBC was not able to qualitatively detect and report particle distribution for the sample spiked with fluorescent microbeads obtained from Dr. Matthew Ross from MacEwan University, Edmonton, Alberta. This result indicates that the UBC lab may not be able to report on microplastic particulate appropriately. GR Petrology did not report particle size distribution for the same size categories, but overall indicate that most particles detected are of a much smaller size $(<8\mu m)$. Summary statistics indicate a size range of 0.01 μm to 338 μm with mean values 2.93 μm to 7.86µm for Yukon River samples. In comparison, Yukon River samples analysed by UBC had mean sizes of 65µm, 67µm and 89µm. The large difference between reported mean sizes from the two labs could be due to differences in analytical techniques, where the technique used by GR Petrology was able to detect a larger proportion of the smallest size of particles (microplastics) in the samples. Given the sieves mesh size used during sampling in the Yukon River, the expected particle size in the samples should range between $45\mu m$ and $500\mu m$. Similarly for filter samples, the expected range is 0.45µm (filter size) to ~200µm (estimated mesh size on pump head). Smaller particles could potentially originate from air deposition; this is supported by the fact that particles found in blanks tend to be smaller. It is also interesting to note that particle sizes observed in the spike samples tend to be much smaller than the beads used to prepare the spikes ($125\mu m$ to $710\mu m$), indicating the presence of particles from other origins.

3.2.2.3 Elemental Composition

The GR Petrology report (2021) indicates that "XRD analysis only detects elements in crystalline compounds because only crystalline components of the sample diffract X-rays. [...] It must be emphasized that each element identified by X-ray diffraction analysis should also be detected by EDS; however, the reverse is not necessarily true." As such, EDS is considered more appropriate for the detection of microplastics, which are typically non crystalline structures.

As shown in Table 3-9 reproduced from the GR Petrology lab report (see Appendix A), all sieve samples are dominated by oxygen, followed by carbon and nitrogen, which is representative of the filter paper used by the lab. Plastic particles are carbon based, and can be connected to hydrogen, oxygen, nitrogen, chlorine, or sulfur (American Chemistry Council, 2021). Most samples did not contain hydrogen or chlorine, while sulphur was present in small amounts. **This indicates that the majority of the particles found are likely not plastic (mineral or paper)**.

Table 3-10 presents elemental composition results for the filter samples. For all samples, carbon and oxygen dominate the elemental spectrograph, some of which represent the filter paper. Again, there is little hydrogen or chlorine, and minimal nitrogen. Sulphur is detected in all samples at higher % weight than in the sieve samples. Non-crystalline carbon and sulphur-bearing compounds could represent plastic particles.

Comments from the lab indicated that analyses were conducted on 2 cm² sections of each filter that had some visible particulate, and that most particles were found to be mineral or inorganic material such as quartz and clays, as well as some diatoms. "Coloured material, fibres or other irregular material was not present. [...] The EDS data does suggest the presence of trace non-crystalline Carbon, Nitrogen and Oxygen compounds. This C, N, O data is most consistent with contributions from the disc and cassette filters analyzed. The EDS data collected does not suggest the presence of C, N or O containing material that is discernable from the filters used in sample collection." (BV, pers.comm. 2021). Examples of particles observed by GR Petrology are provided in Photo 3-1. Overall, this method did not appear to be suitable to detect MP.

Table 3-9: Elemental Composition of Sieve Samples, BV - GR Petrology

GR Sample	Sample ID	н	с	N	0	Na	Ma	AI	Si	Р	s	CI	к	Са	Fe	Ni	Cu
#			-		-						-						
	•																
GR-001	ZN6708-Field Blank Closed	-	26.42	8.48	64.85	-	-	0.14	0.02	-	0.03	-	-	-	0.02	-	0.04
GIX-001	Zivor 00-1 leid Blank Closed	-	-	-	tr	-	-	-	tr	-	-	-	-	-	-	-	-
				-													
GP 002	ZN6709-Field Blank Open	-	25.67	15.95	58.08	-	0.02	0.07	0.02	-	0.09	-	-	0.03	-	-	0.05
		-	-	-	tr	-	-	-	tr	-	-	-	-	-	-	-	-
GR-003	ZN6710-Sieve Control 1	-	27.38	8.18	64.17	-	-	0.10	0.02	-	0.10	0.01	-	-	-	-	0.04
		-	-	-	tr	-	-	-	tr	-	-	-	-	-	-	-	-
	I																
GR-004	ZN6711-Sieve Sample 1	-	27.79	6.62	64.93	0.06	0.04	0.12	0.22	-	0.10	-	0.01	0.03	0.04	-	0.06
		0.41	-	-	48.92	2.17	0.99	10.79	32.00	-	-	-	2.43	-	2.28	-	-
		1	05.00	0.04	04.50	0.07	0.05	0.40	0.00				0.04		0.04	0.04	
GR-005	ZN6712-Sieve Sample 2	-	25.82	9.01	64.52	0.07	0.05	0.13	0.28	-	0.06	-	0.01	0.02	0.04	0.04	0.03
		0.53	-	-	49.89	2.16	0.65	12.18	30.39	-	-	-	2.71	-	1.49	-	-
		1	20.27	5 70	GE 42	0.00	0.06	0.00	0.21		0.11		0.12	0.02	0.04		0.05
GR-006	ZN6713-Sieve Sample 3	- 0.47	20.21	5.70	65.43 50.12	0.08	0.06	10.09	0.21	-	0.11	-	0.12	0.03	0.04	-	0.05
	<u> </u>	0.47	-	-	50.12	0.07	0.04	10.02	55.52	-	-	-	2.01	-	1.95	-	-
			28.21	6.05	65 55	-		0.08	0.02	_	0.03	_		0.01	0.01	_	0.03
GR-007	ZN6714-Spike Sample 1		20.21	0.00	00.00 tr	-	-	0.00	0.02 tr		0.00	-		0.01	0.01		0.00
	H - Hydrogen		Mg - Mag	nesium				CI - Chlo	rine				Cu - Con	per			
	C - Carbon		Al - Alum	inum				K - Potas	ssium				54 OOP	P.0.			
	N - Nitrogen		Si - Silico	on				Ca - Cal	cium				tr - trace				
	O - Oxvgen		P - Phos	phorus				Fe - Iron					Black - EDS Analysis				
	Na - Sodium		S - Sulph	nur				Ni - Nick	el				Red - Ca	Iculated f	rom XRD		

Table 3-10: Elemental Composition of Filter Samples, BV - GR Petrology

GR Sample #	Sample ID	н	с	N	ο	Na	Mg	AI	Si	Ρ	s	СІ	к	Са	Ті	Cr	Fe	Ni	Cu
CD 001	ZN6701 E1	-	33.00	11.44	51.72	0.33	0.33	0.76	1.37	0.02	0.91	-	0.03	0.02	-	-	0.01	-	0.05
GK-001		0.68	-	-	46.72	1.17	2.18	15.40	26.21	-	-	-	2.64	-	-	-	5.01	-	-
CP 002	ZN6702 E2	-	45.73	-	44.44	0.47	0.34	1.05	1.93	-	5.50	-	0.10	0.10	-	-	0.24	0.03	0.07
GK-002	2110702-12	0.71	-	-	45.72	0.49	2.79	15.63	25.99	-	-	-	2.28	-	-	-	6.40	-	-
		•	•				•						•						
GR-003	ZN6703-E3	-	50.00	-	40.68	-	0.19	0.64	1.55	0.09	6.46	-	0.08	0.05	-	-	0.22	-	0.04
011-003	210703-13	0.66	-	-	46.38	1.15	2.32	15.42	26.15	-	-	-	2.60	-	-	-	5.33	-	-
		-	-				_			-	-					-			
GR-004	ZN6704 E4	-	29.87	-	52.59	0.90	0.70	2.28	6.65	0.10	5.41	0.04	0.31	0.29	0.06	-	0.74	-	0.06
	2110704-14	0.62	-	-	44.01	1.38	3.08	16.28	24.62	-	-	-	2.95	-	-	-	7.07	-	-
GR-005	ZN6705-F5	-	42.36	-	41.23	0.34	0.18	0.68	1.72	0.16	12.80	-	0.09	0.08	-	-	0.28	-	80.0
011-003		tr	-	-	tr	tr	tr	tr	tr	-	-	-	tr	-	-	-	tr	-	-
				-						-				-		-			
GR-006	ZN6706-E6	-	50.39	-	33.12	-	-	-	-	-	16.18	0.19	-	-	-	-	-	-	0.12
	211070010								ION	N-CHR	YSTALL	.INE							
GR-007	ZN6707-E7	-	70.29	-	25.09	-	0.14	2.37	0.08	-	1.55	0.04	-	0.02	-	0.04	0.15	0.10	0.12
011 001	211010111	-	-	-	tr	-	-	-	tr	-	-	-	-	-	-	-	-	-	-
	H - Hydrogen		AI - Alun	ninum					Ca - Cal	cium					Sn - Tin				
	C - Carbon		Si - Silicon					Ti - Titan	ium										
	N - Nitrogen		P - Phos	phorus					Cr - Chro	omium									
	O - Oxygen		S - Sulpl	hur					Fe - Iron						tr - trace				
	Na - Sodium		CI - Chlo	rine					Ni - Nick	el					Black - EDS Analysis				
	Mg - Magnesium		K - Potassium					Cu - Copper						Red - Calculated from XRD					

Photo 3-12: Examples of particles observed by GR Petrology, showing crystalline structure and diatoms

4 DISCUSSION

Results show that MP are likely present in the Yukon River downstream of Whitehorse. Since sampling was conducted during winter conditions (under ice), atmospheric deposition is unlikely to be the main source of MP in the Yukon River. However, as indicated by QAQC samples results, it is likely that atmospheric deposition introduced contamination during sampling. Atmospheric deposition could also contribute to MP presence in the Yukon River through summer deposition and spring snow melt.

Both sampling methods tested presented challenges, particularly for winter sampling. Apart from trying to prevent water from freezing in the sieves or filters, one of the biggest challenges is to prevent contamination as MP are omnipresent in the environment. As shown in Table 3-4, MP were found in the blanks and in the control samples, despites numerous precautions to prevent contamination.

Another challenge encountered is the interpretation of laboratory analysis results and differentiating MP from other particles. There is currently no standard analytical method for MP, making comparison of results from different labs difficult. The analytical method used by UBC does not target microplastics specifically and can therefore not provide a MP count or density. Similarly, the particle size distribution and elemental breakdown via XRD and EDS provided by GR Petrology includes all particles in the sample and it can only be inferred whether MP are present or not. Overall, the XRD/EDS methods did not appear to be suitable to detect MP. Microscopy appears to be the most suitable laboratory technique to obtain MP-specific particle count and size distribution. Fluorescent tagging conducted by ALS lab appears to have a higher detection power than the sole use of a 10x dissecting microscope at WRB lab.

5 RECOMMENDATIONS AND CONCLUSION

Given the challenges encountered using the sieve and pump and filter methods, and based on the particle count results obtained from ALS, it is recommended that 1L grab samples be used as the sampling technique in the next phase of the project. Based on recommendations from the literature review, and feasibility of winter sampling, a100L sample volume was chosen for this project, as it was believed that MP concentrations in the natural environment would be too low to detect in smaller sample volumes (1L). The MPP/L counts reported by ALS in river water samples ranged from 7 to 270 (100L) while the sensitivity is reported to be 0.0134 MPP/L in clean samples, indicating it is likely to have enough plastic particulates in 1L to be detected and reported in a smaller sample volumes (1L). Yet, it possible that a 1L sample would not contain any MP, however, a larger number of replicates could compensate for the greater variability in smaller sample volumes. Collecting simple grab samples in a single bottle would reduce the risk of contamination as there is less manipulation involved (through volume reducing techniques sur as sieves or filters) and eliminate the challenges associated with winter sampling conditions where water freezes in the filters of sieves. Microscopy particle count method using fluorescent tagging proposed by ALS seems to be the only quantitative laboratory analysis available commercially at this time that is suitable for detecting MP and is therefore recommended for future sample analyses.

To better understand MP prevalence, sources and fate in the environment, samples should be collected over time, upstream and downstream of communities located on major waterways (Yukon

River), and near potential sources such as storm sewers and water treatment plant discharge. Pristine lakes and rivers away from potential sources, as well as dust fall samples should also be collected to start characterizing baseline and background concentrations of microplastics in watersheds.

6 REFERENCES

- Abigail, B., Courtney, N., Michelle, B., Susan, S., (2017). Grab vs. Neuston tow net: a microplastic sampling performance comparison and possible advances in the field. Anal. Methods (9), 1446–1453.
- American Chemistry Council, 2021. Plastics. How Plastics are Made. <u>https://plastics.americanchemistry.com/How-Plastics-Are-</u> <u>Made/#:~:text=The%20term%20%E2%80%9Cplastics%E2%80%9D%20includes%20mat</u> <u>erials.thousands%20of%20atoms%20bound%20together</u>.
- Anderson, P.J., Warrack, S., Langen, V., Challis, J.K., Hanson, M.L., and Rennie, M.D. (2017). Microplastic contamination in Lake Winnipeg, Canada. Environmental Pollution 225: 223– 231.
- Ballent A, Corcoran PL, Madden O, Helm PA, Longstaffe FJ. (2016). Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Mar Pollut Bull. 110(1): 383-395.
- Bujaczek, T., Kolter, S., Locky, D., and Ross, M.S. (2021). Characterization of microplastics and anthropogenic fibers in surface waters of the North Saskatchewan River, Alberta, Canada. FACETS 6, 26–43.
- Bureau Veritas (BV). Pers. Comm. June 4, 2021.
- Crew, A., Gregory-Eaves, I., Ricciardi, A. (2020). Distribution, abundance, and diversity of microplastics in the upper St. Lawrence River. Environmental Pollution. 260: 113994.
- Duis, K., & Coors, A. (2016). Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe, 28(1), 1-25.
- Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley, H., Amato, S. (2013). Microplastic pollution in the surface water of the Laurentian Great Lakes. Marine Pollution Bulletin. 77 (1-2): 177-182. https://doi.org/10.1016/j.marpolbul.2013.10.007
- Forest, S. A., Holman, L., Murphy, M., Vermaire, J. C. (2019). Citizen science sampling programs as a technique for monitoring microplastic pollution: results, lessons learned and recommendations for working with volunteers for monitoring plastic pollution in freshwater ecosystems. Environmental Monitoring Assessment. 191 (172). <u>https://doi.org/10.1007/s10661-019-7297-3</u>

- Health Canada. (2018). "Government of Canada." Canada.ca, Government of Canada, 30 Nov. 2018, <u>https://www.canada.ca/en/health-canada/services/chemical-substances/other-chemical-substances-interest/microbeads.html</u>
- Hendrickson E, Minor EC, Schreiner K. (2018). Microplastic abundance and composition in Western Lake Superior as determined via microscopy, Pyr-GC/MS, and FTIR. Environ Sci Technol. 52(4):1787-1796.
- Koelmans, A.A., Nor, N.H.M., Hermsen, E., Kooi, M., Mintenig, S.M., De France, J., (2019). Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res. 155, 410–422.
- Li, J., Liu, H., and Paul Chen, J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research 137, 362– 374.
- Mason, S. A., Kammin, L., Eriksen, M., Aleid, G., Wilson, S., Box, C., Williamson, N., Riley, A. (2016). Pelagic plastic pollution within the surface waters of Lake Michigan, USA. Journal of Great Lakes Research. 42 (4): 753-759. <u>https://doi.org/10.1016/j.jglr.2016.05.009</u>
- Marine Debris Program, N. (2015). Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for quantifying synthetic particles in waters and sediments.
- Marine & Environmental Research Institute. (2017). Guide to Microplastic Identification. Center for Environmental Studies. <u>http://static1.squarespace.com/static/55b29de4e4b088f33db802c6/t/56faf38459827e51</u> <u>fccdfc2d/1459286952520/MERI_Guide+to+Microplastic+Identification.pdf</u>
- Masura, Julie, *et al.* (2015). "Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments."
- Pawson, C. (2021). Top environment official urges Canadians to back Ottawa's ambitious plans to tackle plastic trash. CBC News. [internet]. [cited March 15, 2021]. November 13, 2020. Available from: <u>https://www.cbc.ca/news/canada/british-columbia/top-environment-official-urges-canadians-to-back-ottawa-s-ambitious-plans-to-tackle-plastic-trash-1.5801939</u>
- Porter, Bruce. (2019). Pristine Waters: A Pioneering Project in Yukon River Microplastic Research. The Canadian Science Fair Journal. Volume 2. Issue 3.
- Prata, J.C., da Costa, J.P., Duarte, A.C., and Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry *110*, 150–159.

- Prata, J. C., Reis, V., da Costa, J. P., Mouneyrac, C., Duarte, A. C., Rocha-Santos, T. (2021). Contamination issues as a challenge in quality control and quality assurance in microplastic analytics. Jounrnal of Hazardous Materials. 403.
- Rios Mendoza, L.M., and Balcer, M. (2019). Microplastics in freshwater environments: A review of quantification assessment. TrAC Trends in Analytical Chemistry 113, 402–408.
- Scopetani, C., Esterhuizen-Londt, M., Chelazzi, D., Cincinelli, A., Setälä, H., & Pflugmacher, S. (2020). Self-contamination from clothing in microplastics research. Ecotoxicology and environmental safety, 189, 110036.
- Smith, R., Rochman, C. (2021). New science on microplastics suggests macro problems. Toronto Star. [internet]. [cited March 15, 2021]. March 1, 2021. Available from: <u>https://www.thestar.com/opinion/contributors/2021/03/01/new-science-on-</u> <u>microplastics-suggests-macro-problems.html</u>
- Vermaire, J.C., Pomeroy, C., Herczegh, S. M., Haggart, O., Murphy, M. (2017). Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. FACETS. 2: 301-314. <u>https://doi.org/10.1139/facets-2016-0070</u>

World Health Organization. "Microplastics in drinking-water." (2019).

APPENDIX A

LABORATORY CERTIFICATES OF ANALYSIS

CERTIFICATE OF ANALYSIS

Work Order	: WR2100270	Page	: 1 of 3
Client	: Core Geoscience Services Inc.	Laboratory	: Whitehorse - Environmental
Contact	: Sruthee Govindaraj	Account Manager	: Heather McKenzie
Address	: 11 Dolly Varden Drive Whitehorse YT Canada Y1A 6A1	Address	: #12 151 Industrial Road Whitehorse YT Canada Y1A 2V3
Telephone	:	Telephone	: +1 867 668 6689
Project	:	Date Samples Received	: 26-Mar-2021 17:20
PO	:	Date Analysis Commenced	: 14-Apr-2021
C-O-C number	: 17-773553	Issue Date	: 14-Apr-2021 16:54
Sampler	:		
Site	:		
Quote number	: VA21-CGSI100-02		
No. of samples received	: 7		
No. of samples analysed	: 7		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Kaitlyn Gardner	Account Manager Assistant	Internal Subcontracting, Cincinnati, Ohio

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	Field Blank	Field Blank	Sieve Control	Sieve Sample 1	Sieve Sample 2
(Matrix: Water)					Closed	Open			
			Client samp	ling date / time	24-Mar-2021	24-Mar-2021	24-Mar-2021	24-Mar-2021	24-Mar-2021
					11:15	11:15	16:58	11:54	12:09
Analyte	CAS Number	Method	LOR	Unit	WR2100270-001	WR2100270-002	WR2100270-003	WR2100270-004	WR2100270-005
					Result	Result	Result	Result	Result
Physical Tests									
microplastic particles	n/a	MicroPlastics	-	-	See	See attached	See attached	See attached	See attached
					attached				

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	Sieve Sample 3	Spike Sample	 	
(Matrix: Water)								
			Client samp	ling date / time	24-Mar-2021 16:15	24-Mar-2021 10:30	 	
Analyte	CAS Number	Method	LOR	Unit	WR2100270-006	WR2100270-007	 	
					Result	Result	 	
Physical Tests								
microplastic particles	n/a	MicroPlastics	-	-	See	See attached	 	
					attached			

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: WR2100270	Page	: 1 of 6
Client	: Core Geoscience Services Inc.	Laboratory	: Whitehorse - Environmental
Contact	: Sruthee Govindaraj	Account Manager	: Heather McKenzie
Address	: 11 Dolly Varden Drive	Address	: #12 151 Industrial Road
	Whitehorse YT Canada Y1A 6A1		Whitehorse, Yukon Canada Y1A 2V3
Telephone	;	Telephone	: +1 867 668 6689
Project	:	Date Samples Received	: 26-Mar-2021 17:20
PO	:	Issue Date	: 14-Apr-2021 16:54
C-O-C number	: 17-773553		
Sampler	:		
Site	:		
Quote number	: VA21-CGSI100-02		
No. of samples received	:7		
No. of samples analysed	:7		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

RIGHT SOLUTIONS | RIGHT PARTNER

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 15:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 15:00 is used for calculation purposes.

Matrix: Water					E١	aluation: × =	Holding time excee	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Microplastic Particles by Microscopy										
HDPE										
Field Blank Closed	MicroPlastics	24-Mar-2021					14-Apr-2021			
Physical Tests : Microplastic Particles by Microscopy										
HDPE										
Field Blank Open	MicroPlastics	24-Mar-2021					14-Apr-2021			
Physical Tests : Microplastic Particles by Microscopy										
HDPE										
Sieve Control	MicroPlastics	24-Mar-2021					14-Apr-2021			
Physical Tests : Microplastic Particles by Microscopy										
HDPE										
Sieve Sample 1	MicroPlastics	24-Mar-2021					14-Apr-2021			
Physical Tests : Microplastic Particles by Microscopy										
HDPE										
Sieve Sample 2	MicroPlastics	24-Mar-2021					14-Apr-2021			
Physical Tests : Microplastic Particles by Microscopy										
HDPE	Miniple	04.04								
Sieve Sample 3	MicroPlastics	24-Mar-2021					14-Apr-2021			
Physical Tests : Microplastic Particles by Microscopy										
HDPE	Minu Dianti	04.04					44.4			
Spike Sample	MicroPlastics	24-Mar-2021					14-Apr-2021			

Legend & Qualifier Definitions

 Page
 : 4 of 6

 Work Order
 : WR2100270

 Client
 : Core Geoscience Services Inc.

 Project
 : ---

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

• No Quality Control data available for this section.

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Microplastic Particles by Microscopy	MicroPlastics	Water	See attached.	See attached report.
	Cincinnati -			
	Environmental - 4388			
	Glendale-Milford Road			
	Cincinnati Ohio United			
	States 45242			

QUALITY CONTROL REPORT

Work Order	WR2100270	Page	: 1 of 2			
Client	Cara Gaassianea Sanvisas Inc	Laboratory	Whiteherse Environmental			
Contact	: Sruthee Govindaraj	Account Manager	: Heather McKenzie			
Address	11 Dolly Varden Drive Whitehorse YT Canada Y1A 6A1	Address	:#12 151 Industrial Road Whiteborse, Yukon Canada Y1A 2V3			
Telephone	:	Telephone	:+1 867 668 6689			
Project	:	Date Samples Received	:26-Mar-2021 17:20			
PO		Date Analysis Commenced	: 14-Apr-2021			
C-O-C number	: 17-773553	Issue Date	: 14-Apr-2021 16:54			
Sampler	:					
Site	:					
Quote number	: VA21-CGSI100-02					
No. of samples received	: 7					
No. of samples analysed	: 7					
This report supercodes any providus report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full						

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits •
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits ۲

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Kaitlyn Gardner	Account Manager Assistant	Internal Subcontracting, Cincinnati, Obio
Signatories	Position	Laboratory Department

Account Manager Assistant

Internal Subcontracting, Cincinnati, Ohio

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Contact: Heather McKenzie Company: ALS Whitehorse Address: 12-151 Industrial Rd, Whitehorse, YT, Y1A2V3

Project / Location: WR2100270 PO Number: WR2100270 ALS Work Order: 21040081

NARRATIVE: This method was based on the study, "Synthetic Polymer Contamination in Bottled Water" conducted at the State University of New York at Fredonia which found an average of 325 MPP/L in bottled water brands from around the globe. The efficacy of this method for the detection of MPP in non-potable waters or other matrices has not been determined. Samples were analyzed according to ALS SOP Micro-Fluor-001 for the detection of micro plastic particles (MPP) using fluorescent tagging and static image analysis. This method has been shown to be sufficient for the rapid detection of polymerics including polyethylene, polypropylene, polystyrene and nylon 6 though it cannot differentiate between them.

Particle sizing is performed using static image analysis of representative calibrated two dimensional photomicrographs. The minimum caliper is the shortest distance between any 2 points along a single particle boundary and represents the approximate width/diameter of the particle/fiber. The maximum caliper is the longest distance between any 2 points along a single particle boundary and represents the length of the particle/fiber. The smallest single particle dimension confidently resolved by this method at the lowest available magnification has been determined to be approximately 6.5µm. Additionally, particles whose largest single dimension is greater than 5mm fall outside the generally accepted definition of MPP. Therefore, the total MPP concentration reported includes only fluorescing particles >6.5µm.

The dimension of interest (DOI) is selected based on observation of dominant particle morphology and determines the particle dimensions reported herein. Samples observed to contain primarily fibrous MPP exhibiting a length to width aspect ratio of 3:1 or greater are categorized according to maximum caliper (length). Samples observed to contain primarily non-fibrous MPP are categorized according to minimum caliper (diameter or width). Samples observed to contain an approximately equal mixture of both fibrous and non-fibrous MPP are categorized according to total area in square µm or mm. The analytical sensitivity (AS) for this method is based on the detection of one particle in the total area analyzed. When possible sufficient sample is analyzed to yield an AS<10 MPP/L. However, the volume of sample that can be analyzed is dependent upon clarity. Therefore, samples containing significant concentrations of interferences may not attain the desired AS. Interferences such as opaque suspended solids may result in a negative bias and lipid-rich interferences such as fats, waxes, and oils may result in a positive bias.

All sample collection is performed outside ALS and is the sole responsibility of the client. Filtered samples are archived for 60 days prior to disposal. Results apply only to portions analyzed. Microscopy is not suitable for the examination of all types of materials. Additional testing may be required.

IDENTIFICATION					
	WR2100270-	WR2100270-	WR2100270-	WR2100270-	WR2100270-
Client Sample ID:	001	002	003	004	005
ALS Sample ID:	21040081-01	21040081-02	21040081-03	21040081-04	21040081-05
Collection Date:	3/24/2021	3/24/2021	3/24/2021	3/24/2021	3/24/2021
Collection Time:	14:15	14:15	19:58	14:54	15:09
ANALYSIS					
Analyst:	Pamela Hizar				
Date:	4/7/2021	4/7/2021	4/7/2021	4/7/2021	4/7/2021
Filtered Volume (mL):	1000	1000	15	10	55
AS (MPP/L):	1.34	1.34	89.18	133.77	24.32
DOI:	DIAMETER	DIAMETER	DIAMETER	DIAMETER	DIAMETER
CONCENTRATION (MPP/	′L)				
>6.5 <u><</u> 10µm:	5.35	4.01	446	1,204	243
>10 <u><</u> 100µm:	0.00	12.04	15,785	59,527	25,951
>100 <u><</u> 500μm:	1.34	1.34	2,051	9,765	4,451
>500µm <u><</u> 1mm:	0.00	0.00	178	401	170
>1 <u><</u> 5mm:	0.00	0.00	0.00	0.00	0.00
TOTAL:	6.69	17.39	18,460	70,897	30,815
IDENTIFICATION					
	WR2100270-	WR2100270-			
Client Sample ID:	006	007			
ALS Sample ID:	21040081-06	21040081-07			
Collection Date:	3/24/2021	3/24/2021			
Collection Time:	19:15	13:30			
ANALYSIS					
Analyst:	Pamela Hizar	Pamela Hizar			
Date:	4/7/2021	4/7/2021			
Filtered Volume (mL):	75	1000			
AS (MPP/L):	17.84	1.34			
DOI:	DIAMETER	DIAMETER			
CONCENTRATION (MPP/	′L)				
>6.5 <u><</u> 10µm:	589	9			
>10 <u><</u> 100µm:	44,161	247			
>100 <u><</u> 500µm:	4,245	9			
>500µm <u><</u> 1mm:	214	0			
>1 <u><</u> 5mm:	36	4			
TOTAL:	49,245	270			

PHOTOMICROGRAPHS

Collected using OMAX Toupeview Calibrated Digital Imaging System

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here (lab use only)

COC Number: 17 - 773553 Page of

Canada Toll Free: 1 800 668 9878

. . .	www.aisgiobal.com	- the first sector	2011. gant, ann an ann an an an an an an an an an a	Donort Cornot	/Diatribution	ana ana amin'ny tanàna mandritra dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaom			ct Servir	e tevel 5	elow - C	Contact	VOUC	En۱	/iro n	ment	al Di	visio	n	
	Comact and company name below will appear		Solari Papart Er	rmet: bil ppr [V pyce 1 1 5			Ran	ular (R)		tandard T	'AT if reci	ewerd it	Wh	iteho	orse				
Company:	Core Geoscience Ser	VILES	Geleci Repuit Fo	Almat. KJ PDF	X EXCEL "		-	(day	104.209			3 4	Rusi	V	Vork		Refere		~	
	SUTTLE GOVINAL	(A)		QC) Repuit with Rep		f boy chacked	RBTY SS Day	3 day	[D3.25%	4 🗀 43 🗂		- BGEN		1	∕V F	42	IUL	121	0	L
Phone:	X67 633 4041					FAX	PRIO	2 day	102.509	α [] ω []	0101070000		ime i abori							
Stract	Company address below will appear on the innant			Constant (1)	Camara	11	E	Date an	d Time R	auired for	all E&P T	ATs:	T	l		UZ.M	o Wa			100400000000
City/Province:	I Dally Vallen			hycinz @	comp hon	CIL	For tas	ts that can	not be per	formed acco	rding to th	le service	level s							
Postal Code:	VIA GAL		Email 3	nermeos	Concigeo.		-	*****************	NTRACTOR AND	ala an			Anal				A PC	₹ 		
Invoice To	Same as Report To	NO		Invoice Dis	stribution	n an	-		in)	dicate Fite	ed (F), Pr	aserved (P) or f					2		T
	Copy of Invoice with Report X YES	NO	Select Invoice D	istribution: 😿 E	MAIL MAIL	FAX								Talan		. 1 007	200 600	••••		5010
Company:			Email 1 or Fax	admin@C	URGre	ia	1			. Verinte internet and			CONSTRUCTION OF THE	reiep	none.	+ I 00/	000 000	9		ruct
Contact:			Email 2			Le <u></u>]¥									1		1	275adas	Inst
	Project Information		C	Dil and Gas Require	d Fields (client u	se)	TY												E-state	cial
ALS Account #	Quote #: VA21-6651100-	.02	AFE/Cost Conter:		PO#		Z	~											\overline{O}	Spe
Job #:			Major/Minor Code:		Routing Code:		18	2											a pr	see
PO/AFE:			Requisitioner:				L	75										-	U) Li	RD (
LSD:			Location:					3											Beaked access	AZA
ALS Lab Wo	rk Order # (lab use only):	an <u>an an a</u>	ALS Contact:		Sampler:		NBEP	dan)	-										d N	CTED M
ALS Sample #	Sample Identification a	nd/or Coordinates	5,	Date	Time	Sample Type		E												SPB
(lab use only)	(This description will ap	pear on the report)	ana, jefen er fan ste skieder fan de	(dd-mmm-yy)	(hh;rìm)	campie type	Z	\leq									mana		U)	l su
	Freld Blank Close,	d		24-Mar-21	11:15	water		X												_
	Freld Black ODer	<u>`````````````````````````````````````</u>		24-Mar-21	1615	water	1													
	Signe (cotal)	<u> </u>		24. Mar. 21	16:58	IN IN LOF														
	SHUU Scalo 1			74 Min 71	11.74	IN 12 br														1
	share comple	>		211 Ma - 71	12-09	INCA JOR	1	1						:	1					1
	SAUL CAMPU	?		24 100 - 71	16:15	V la lac														1
·	Sieve sample -	>		C4-11-0V-61	10-13	WAR														
	->pike sample			25-11-01-01	10.50	-make		X												
							-							+			+			+
							-	+					_	+						+
								┝						+	\rightarrow					
																				ļ
Drickin	a Water (DW) Samples ¹ (client use)	Special Instructions /	Specify Criteria to	add on report by clic	king on the drop-d	lown list below	or measure			S.	AMPLE	COND	TION AS	3 RECEIV	'ED (ia	ab use c	nly)		tala iso waxaa ka k	
Diaikan	ng water (Dwy Samples (Chent use)		(ele	ectronic COC only)			Froz	en	<u>L</u>			SIF Obs	ervation	5 10	25			No	-	<u></u>
Are samples take	n from a Regulated DW System?						Ice P	'acks ing tritig	ol L ic tod F	e Cubes m		Justedy	seal inte	aci y	res	www.al		NO		lonal
								មម្ម អាមថ ស			DERATIN	RESYC		ADM OTHER ADM DISTOR	F P		ER TEMP	SILICASIS	ES °C	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Are samples for t	ruman consumption/ use /							17	an incluc	JOLEN (II)				1					1	
<u>і і х</u>				BUTIAL OURDATIN	TRECERTION	ah uco oabu)	1	3				TINIAL S	HIDME	L AT RECE	PTION	l (lab us	e onhd	*****		
Released hv:	SHIPMENT RELEASE (client use)	Time-	Received by:	INITIAL SHIPMEN	Date: / . /	au use only	Time		Receive	ed by:	r	113741. 1	Dat	e:		CICC US	c only)	T	ime:	
Casher	ine Henry 26-Mar-	21 15:45	T		MAR	26	4	201		-										
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INFO	RMATION	$\overline{\mathcal{I}}$	WHI	TE - LABORATORY	COPY YELLO	W-CL	IENT CO	PY										CONS	. 2018 FROM

Cardia Tol Free: 1800 668 878 Candid Tol Free: 1800 668 878 Berger The Contracting on the Number of Law on the Law on the Law on the Contracting on the Number of Law		Chain of Cu I	ustody (COC) / Request Form	Analytical	Affi	x ALS bar	code	alabe	here	* *	COC N	umber: Pa	17 -	773	355 \	;3		
Market No. Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	(ALS)	Canada Canada	Toll Free: 1 800 66	58 9878	1. - 1.	: 4%) : 4%)		3 1	.}	, ,			··· ·	•	'		~	\
All of Carls Carls Carls See the control of the control	Descent To	www.aisgiobal.com		Den est Farmet	rom / Distribution		<u> </u>	Calant			1		Env	(ironm)	ental	Divisi	on	
Campon Campon <td>Report 10</td> <td>Contact and company name below will appear on the final report</td> <td>Salasi Basart Fr</td> <td>Report Format</td> <td></td> <td></td> <td>+</td> <td>Select</td> <td>Service</td> <td>evel Belo</td> <td>W - Contact)</td> <td>rour</td> <td>Whi</td> <td>tehors</td> <td>e</td> <td></td> <td>ļ</td> <td><u> </u></td>	Report 10	Contact and company name below will appear on the final report	Salasi Basart Fr	Report Format			+	Select	Service	evel Belo	W - Contact)	rour	Whi	tehors	e		ļ	<u> </u>
Contract Contran Contract Contract Contra	Company:	Core Geoscience Services		OC) Benert with Ben	X EXCEL E		L,	Regula	ar (R)	X Stand	ard TAT if rece	ived t	W	/ork Orc	ler Ref	erence		
Company: Compa		Juthee Gouldana		QC) Report with Repo	on Kirsi		×TT× veo	4 day [P	4-20%]	Ц		Busi	- V	NR	210)02	70 ⁻	
Sind: Construction Construc	Phone:		Compare Kes		Provide details below in	DOX CHECKED	PRIO	3 day [P	3-25%]		By Sa	me I	-				, T	
Internet Internet <td< td=""><td></td><td></td><td>Select Distributio</td><td></td><td></td><td></td><td>, e</td><td>Z day [P</td><td>2-30 %</td><td></td><td></td><td></td><td></td><td></td><td>' IN A F</td><td></td><td>III ¹</td><td></td></td<>			Select Distributio				, e	Z day [P	2-30 %						' IN A F		III ¹	
	Street:	1 Dolly Varach Dr -	Email 1 or Fax	scuthee w	coregeo.	<u>Co</u>		Date and I	ime kequ	red for all E	&P TAIs:	Ц.			:Mitti	à C 🗐		<u> </u>
Construction C	City/Province:	whitehorse 47	Email 2 Cut	nerine	<u>care gea</u> ,	<u>ca</u>	Por test	ts that can no	t be perform	ned according	to the service I	evel s			1.4		, 	
Image: 10 Copy and 20 Copy a	Postal Code.		Email 3	Invelop Di				<u> </u>	(P			Anal		- 111 ID 12	R 1 1	412		
India di micola mico			Ontrast Invalida D				S	 	Indica	Te Filtered (F	-), Preserved (I	-) or 1	· •			ושפריי	.	<u> </u>
Constant Emili or size Constant Emili or size Constant Emili or size Constant Emili or size <			Select Invoice D			FAX	18		_				Telept	10ne:+1	867 668 (6689	i	E L
United Project Information Off and Gas Required Fields (client use) Project Information Project Information ALS Account # Clucke #	Company:		Email 1 or Fax	anninee	ureyee.	ia	ž)	Ĭ
ALS Account # / Quet # VA2 - Get Si 100 - 02 #Statute of the intervence of th	Contact:	Duai ant Information	Email 2	Nil and Can Dequired	d Einlah faliant		- ₹										T	Ĩ
ALS ACCOUNTS / Guerr CO Page 2 Do diff. Required notions Required notions Do diff. Required notions Required notions Diff. ALS Contect: Sample: ALS Lab Work Order # (this description will appear on the report) (this description will appear on the report) (this description will appear on the report) Exercise Contract Context: Sample: Required notions Stell ve Contract Context: Naker Stell ve Contract Context: Stell ve Contract Co		$\frac{1}{2} \frac{1}{2} \frac{1}$	AFE/Cast Castor	Di and Gas Required	Pields (client us	se)	15										Z	ecia
Dot AFE Pocular Use: Pocula	ALS ACCOUNT #7	GOOLEN VHZI-GGSIIUU UZ	Maior/Maer Codo:		Pouting Code:		- Q	3					1		ľ	11	0	S S
Durch and the second			Requisitioner:		Roburny Code.			7									S	as)
ALS Lab Work Order # (lab use only): ALS Contact: Sampler: Bargler:			Legation:				۱ö	3									Щ	AR
ALS Lab Work Order # (ab use only): ALS Contact: Sampler: B P			Location,				<u> </u>											Ι¥
ALS Semples Sample Identification and/or Coordinates (Inb. doe: only) Date (The doc: non/y) Time (Inb. doc: non/y) Sample Identification and/or Coordinates (conmony) Date (conmony) Time (Inb. doc: non/y) Sample Identification and/or Coordinates (conmony)	ALS Lab Wor	k Order # (lab use only):	ALS Contact:		Sampler:			8									AF	
(This description will appear on the report) (c3 mmm-yy) (bbmm) Sample Type Z Image: Constraint on the report) (c3 mmm-yy) If the (d. B) (ank C) (brscad 2(4-Mar2) 11/15 (una Star.) X Image: Constraint on the report) Image: Constraint on the report) <td< td=""><td>ALS Sample #</td><td>Sample Identification and/or Coordinates</td><td>L</td><td>Date</td><td>Time</td><td>T</td><td>ן₹</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ā</td><td>E E</td></td<>	ALS Sample #	Sample Identification and/or Coordinates	L	Date	Time	T	ן₹	3									Ā	E E
The ld Blank (lused 24-Mgr-21 11:15 waster 1 x Sheve (ontrol 24-Mgr-21 16:15 waster 1 x Sheve (sample 2 24-Mgr-21 16:15 waster 1 x Sheve (sample 3 24-Mgr-21 16:15 waster 1 x Sheve (sample 3 24-Mgr-21 16:15 waster 1 x Sheve (sample 3 25-Mgr-21 10:30 Master 1 x 1 1 Sheve (samples (client use) Special instructions / Specify Citeth to add an report by clicking on the drop-down list below SAMPLE CONDITION AS RECEIVED (lib use only) No 1 Intractional consumption of use? Special instructions / Special instr	(lab use only)	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	Ĩź	$ \geq $									S	sus
Field Blank Open 24-MW-11 H.IS WAK X Image: Stell Control Sheve Control 24-MW-21 H.IS WAK X Image: Stell Control Image: Stell Control Sheve Sample 24-MW-21 H.Stell Wake I X Image: Stell Control Image: Ste	56	Eveld Blank Closed		24-Mar-21	11:15	14/19 400	1	X										
Steve (antro) 24-Mar 2 16:58 water 1 x <	ч Қ.	Freld Black Open		OLILMAR-71	11:15	into ter		\square		·				+++				
Stelle Stelee Stelle Stelle		Share (catal		2/1 Mar 21	1154	here you				<u> </u>			<u> </u>					
SPEUE SG MPLC INITIAL SHIPMENT RECEPTION (Iab use only) Secial Instructions / Specify Criteria to add on report by clicking on the drop-down list balow Source and the second	با	Charles Control		29-11 0 - 21	10,30	INARO			+				/ <u> </u>					+
SNUC Sample 2 24.Mar.(1) 12.6 10.30 Walter 1 <		Sieve Sample 1	·	124-1110-21	11.54	Water		- <u>×</u>					r	-+				4
SIPULE Sample_S 24-Mar-(1 16:D) WAlter 1 X SplKc Sample_S 25-Mar-2 10:30 NAAr 1 X SplKc Sample_ SplKc Sam	*.	sieve sample 2		24-112-0	12-09	water	┿┸	X	+				┢══┼╼╸					
Spike Samples Samples 25-Mar-2 10:30 Wakr V Image: Samples for luman consumption/ use? Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) SAMPLE CONDITION AS RECEIVED (lab use only) Prinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) SAMPLE CONDITION AS RECEIVED (lab use only) Prozen SIMPLE TO CONDITION AS RECEIVED (lab use only) No Image: Cooling Initiated UP System? Image: State from a Regulated DW System? Simples for human consumption/ use? No Image: Simples for human consumption/ use? No Image: Simples for human consumption/ use? Image: Simple for human consumption/ use?	8 :	sieve sample 3		24-Mor-21	16:15	Water		X				_	└── <u></u>	\rightarrow				
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) SAMPLE CONDITION AS RECEIVED (lab use only) Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) Silf Observations * Yes No Are samples taken from a Regulated DW System? Image: Condition as a consumption / use? No Image: Condition as a consumption / use? Image: Ves M No SHIPMENT RELEASE (client use) SINITIAL SHIPMENT RECEPTION (lab use only) Final Cooler Temperatures consumption / use? Final Cooler Temperatures consumption / use? Image: Ves M No Date: Received by: Date: Control of the cooler Temperatures consumption / use? Released by: Date: MAR 3 1 2021 Time: Received by: Mark Tay Water samples are back from a Regulated Dring Water (DW) System, plass submit using an Authorized DW COC form Writte - LABORATORY COPY Yellow Cullent COPY	25	Spike Sample		25-Mar-21	10:30	water	1	X										
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) SAMPLE CONDITION AS RECEIVED (lab use only) Trinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) Frozen SIF Observations Yes No Are samples taken from a Regulated DW System? Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) Frozen SIF Observations Yes No Image: Colored taken from a Regulated DW System? Yes No Image: Colored taken from a Regulated DW System? No Image: Colored taken from a Regulated DW System? No Image: Colored taken from a Regulated DW System? No Image: Colored taken from a Regulated DW System? No Image: Colored taken from a Regulated DW System? No Image: Colored taken from a Regulated DW System? No Image: Colored taken from a Regulated DW System? No Image: Colored taken from a Regulated DW System? No Image: Colored taken from a Regulated DW System? No Image: Colored taken from a Regulated DW System? No Image: Colored taken from a Regulated DW System? Image: Colored taken from a Regulated DW System? Image: Colored taken from a Regulated DW System? Image: Colored taken from a Regulat	1. 1. 1.											_						
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) SAMPLE CONDITION AS RECEIVED (lab use only) Are samples taken from a Regulated DW System? Sif Observations Yes No Yes No Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) Frozen Sif Observations Yes No Are samples taken from a Regulated DW System? Instructions / Specify Criteria to add on report by clicking on the drop-down list below Sif Observations Yes No Instructions Are samples for human consumption/ use? Yes No Instructions / Specify Criteria to add on report by clicking on the drop-down list below Final ShipMENT RECEPTION (lab use only) Instructions / Specify Criteria to add on report by clicking on the drop-down list below ShipMENT RELEASE (client use) Instructions / Specify Criteria to add on report by clicking on the drop-down list below Final ShipMENT RECEPTION (lab use only) Final ShipMENT RECEPTION (lab use only) Refeased by: Date: Time: Received by: Date: MAR 3 1 2021 Time: REFER TO BACK PAGE FOR ALS LOCATIONS AND BAMP LING INFORMATION WHITE- LABORATORY COPY Yellow' Client COPY Yellow' Client COPY MAR 3 1 2021	تي د ه																	
Drinking Water (DW) Samples ¹ (client use) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) SAMPLE CONDITION AS RECEIVED (lab use only) Are samples taken from a Regulated DW System? SiF Observations Yes No YES NO Ice Packs Ice Cubes *Custody seal intact Yes No Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) Frozen SIF Observations Yes No Ice Packs Ice Cubes *Custody seal intact Yes No Ice Packs Ice Cubes *Custody seal intact Yes No Ice Packs Ice Cubes *Time: *Tim	14 A			1												-		
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) SAMPLE CONDITION AS RECEIVED (lab use only) Are samples taken from a Regulated DW System? SIF Observations Yes No Yes No Ice Packs Ice Cubes *Custody seal intact Yes No Are samples for human consumption/ use? INITIAL SHIPMENT RELEASE (client use) SIFObservations Yes No Ice Packs Ice Cubes *Custody seal intact Yes No I yes No Initial ShiPMENT RELEASE (client use) SIFObservatures *C FINAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use only) Released by: Date: Time: Received by: Date: MAR 3 1 2021 Time: If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form WHITE - LABORATORY COPY YELLOW* CLIENT COPY Yellow* Client copy	389			· · · · · · · · · · · · · · · · · · ·			-											
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) SAMPLE CONDITION AS RECEIVED (lab use only) Are samples taken from a Regulated DW System? SIF Observations Yes No YES NO No SIF Observations Yes No Are samples for human consumption/ use? Initiated (client use) No Initiated (client use) No Initiated (client use) SHIPMENT RELEASE (client use) SIF Observations SIF Observations SIF Observations SIF Observations Yes No Released by: Initiated (client use) SIF Observations Yes No Initiated (client use) No Initiated (client use) No Initiated (client use)					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·												
Drinking Water (DW) Samples' (client use) Operations of peerformance code of peerformance		Special Instruction	s (Specify Criteria to	add on report by click	ing on the drop-dr	wp list below	╈╍╼┙	<u> </u>		SAMP	LE CONDIT	ION AS	RECEIVE	ED (lab us	e oniv)			L
Are samples taken from a Regulated DW System? Ice Packs Ice Cubes Couling Initiated No Are samples for human consumption/ use? Initiated Initiated Initiated Initiated Initiated Ice Packs Final Cooler TEMPERATURES *C Final Cooler TEMPERATURES *C I ves No Initiated Initiated Ice Packs Ice Cubes Final Cooler TEMPERATURES *C Final Cooler TEMPERATURES *C SHIPMENT RELEASE (client use) Initiated by: Initiated by: Ice Packs Ice Packs <t< td=""><td>Drinking</td><td>g Water (DW) Samples¹ (client use)</td><td>(ele</td><td>ctronic COC only}</td><td>ang on the drop-at</td><td></td><td>Froze</td><td>en en</td><td></td><td>2</td><td>SIF Obse</td><td>rvations</td><td>Yer</td><td>3</td><td>· •,,</td><td>No</td><td>T</td><td></td></t<>	Drinking	g Water (DW) Samples ¹ (client use)	(ele	ctronic COC only}	ang on the drop-at		Froze	en en		2	SIF Obse	rvations	Yer	3	· •,,	No	T	
Image: Prest And Are samples for human consumption/ use? Image: Final cooler temperatures % Final cooler temperatures % Image: Prest No Image: Final cooler temperatures % Image: Final cooler temperatures % Image: Final cooler temperatures % Image: Prest No Image: Final cooler temperatures % Image: Final cooler temperatures % Image: Final cooler temperatures % Image: Prest No Image: Final cooler temperatures % Image: Final cooler temperatures % Image: Final cooler temperatures % Released by: Date: Time: Received by: Date: Image: Final cooler temperatures % Image: Cooling Initiated by: Date: Time: Received by: Date: MAR 3 1 2021 Refere to Back Page For ALS LOCATIONS AND SAMPLING INFORMATION White - Laboratory COPY Yellow? Client Copy MAR 3 1 2021 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form. Image: Final condition of the same samples are taken from a Regulated Drinking Water (DW) System, Please submit using an Authorized DW COC form.	Are samples taken	n from a Regulated DW System?					Ice Pa	acks 🔼	lce C	ubes 🗲	Custody	seal inta	st Y∈	ж 💭	1	Na 🗧	ן ז	
INITIAL COOLER TEMPERATURES *C INITIAL SHIPMENT RECEPTION (lab use only) ITIME: Colspan="2">INITIAL SHIPMENT RECEPTION (lab use only) ITIME: Colspan="2">INITIAL SHIPMENT RECEPTION (lab use only) ITIME: INITIAL SHIPMENT RECEPTION (lab use only) ITIME: INITIAL SHIPMENT RECEPTION (lab use only) ITIME: INITIAL SHIPMENT RECEPTION (lab use only) INITIAL SHIPMENT RECEPTION (lab							Cooli	ng Initiated		-414 -	<u> </u>			r.		<u> </u>		
YES NO SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) Released by: Date: FINAL SHIPMENT RECEPTION (lab use only) Refer to BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION IS:45% Date: MAR 3 1 2021 Time: 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form. WHITE - LABORATORY COPY YELLOW: CLIENT COPY MAR 3 1 2021 Time:	Are samples for hi						. <u>5</u>		AL COOLE	RTEMPER	ATURES °C	, in the second		FINAL CO	JOLER TE	MPERATUR	KES °C	
Sincence in the lease of by: Sincence interview in				MUTIAL CLUBURE	T DECEDION "	b		31					8		d	<u> </u>	5	
MAR 3 1 2021 Mar 3 1 2021 Mar 3 1 2021 Mar 3 1 2021 Mar 3 1 2021 Mar 3 1 2021 Mar 3 1 2021 Mar 3 1 2021 Mar 3 1 2021 Mar 3 1 2021 Mar 3 1 2021 M	Released by:	Date: Time	Received by:	AND HAL SHIPMEN	Date: / . A	b use only)	Time		ceived h	v:	FINAL SI	HIPMEN	I RECEP	TION (lab	use onl	<u>y)</u>	Time	
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW? CLIENT COPY	Cather	Me Henry 26-Mar-21 15:4	NS Z	n is	MAR.	26	11	2 011	Ce .	na cl	e. SC	Date	MA	K 3 1	2021	.41	123	01
1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form	REFER TO BACK P	PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	- V	WHI	E - LABORATORY	COPY YELLO	W ² CLI	ENT COPY									JUNE	Pre
	1. if any water samples	s are taken from a Regulated Drinking Water (DW) System, please submit using an i	Authorized DW COC form	n				<u>-</u>								·	<u> </u>	

Your Project #: MP - QA/QC Site Location: CITY OF WHITEHORSE

Attention: Ethan Allen

Core Geoscience Services (Coregeo) 11 Dolly Varden Drive Whitehorse, YT CANADA Y1A6A1

Your C.O.C. #: 632793-01-01, 632793-02-01, 632793-03-01

Report Date: 2021/05/13 Report #: R3020087 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C119656 Received: 2021/03/26, 16:00

Sample Matrix: Water # Samples Received: 22

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Particle Size Distribution (1)	7	N/A	2021/04/27		
Particle Size Distribution (1)	8	N/A	2021/05/12		
Particle Size Distribution Subcontract (2)	7	N/A	2021/04/28		

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Sub Vancouver to GR Petrology

(2) This test was performed by Sub Vancouver to U of BC

Your Project #: MP - QA/QC Site Location: CITY OF WHITEHORSE

Attention: Ethan Allen

Core Geoscience Services (Coregeo) 11 Dolly Varden Drive Whitehorse, YT CANADA Y1A6A1

Your C.O.C. #: 632793-01-01, 632793-02-01, 632793-03-01

Report Date: 2021/05/13 Report #: R3020087 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C119656 Received: 2021/03/26, 16:00

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bureauveritas.com Phone# (604) 734 7276

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Core Geoscience Services (Coregeo) Client Project #: MP - QA/QC Site Location: CITY OF WHITEHORSE

RESULTS OF CHEMICAL ANALYSES OF WATER

BV Labs ID			ZN	N6701		ZN6	702		ZN6703		Z	ZN6704		ZN6	705		ZN670)6		
Sampling Dat	e		202	1/03/24	2	021/	03/24	20	021/03/24	Ļ	20	21/03/24		2021/	03/24	2	021/03	3/24		
			6227	11:50	62	12	.27	627	13:01	1	622	13:30	6	14: 22702	01 01	62	15:4. 2702 C	3		
		UNITS	6	F1	03	F	2	052	F3	1	052	F4	. 0	52795 F:	5	. 05	F6	1-01	QC E	Batch
Paramotor					1								-							
	arameter		ATT			ATT A			TTACUED		• •			ATT A			TTAC		422	2000
Subcontract P	arameter	N/A	ATT	IACHED				A			AI	TIACHED		ATTA		F	ATTACF	IED	AZZ	3989
BV Labs	5 ID			ZN67	07				ZN6708	8		ZNG	5709		Z	ZN671	0			
Sampli	ng Data			2021/0	3/25				2021/03/	/24		2021/	/03/2	4	20	21/03,	/24			
Sampin	ig Date			10:5	50				11:15			11	.:15			16:57	1			
COC Nu	ımber			632793-	01-01	L		6	632793-01	L-01		632793	3-01-	01	632	2793-0	1-01			
			UNITS	F7		Q	C Batch		FIELD BLA	NK D		FIELD	BLAN PEN	IK	SIEV	E CON 1	TROL	QC E	atch	
Parame	eter																			
Subcon	tract Paramete	r	N/A	ATTAC	HED	A	223989		ATTACHI	ED		ATTA	CHEE)	AT	ТТАСН	ED	A21	0234	
										-						-		-		
	BV Labs ID					ZN67	11		ZN6712		-	ZN6713		ZN	5714					
	Sampling Date				20	021/0 11:5	3/24 57	20)21/03/24 12:08		20)21/03/24 12:41		2021, 10	/03/25):28					
	COC Number				632	2793-	02-01	632	2793-02-0	1	632	2793-02-01	L	63279	3-02-0	1				
	COC Number			UNITS	SIE	VE SA 1	MPLE	SIE	VE SAMPL 2	E	SIE\	VE SAMPLI 3	ES	SPIKES	SAMPL 1	E Q	C Batch	n		
	Parameter																			
	Subcontract	Parame	eter	N/A	A	TTAC	HED	A	TTACHED		A	TTACHED		ATTA	CHED	A2	210234			
BV Labs ID				ZN671	.5		Z	ZN67:	16		ZNE	6717		ZN671	.8	Z	N6719)		
Come line De	•-			2021/03	/24		202	21/03	3/24	20	021/	/03/24	20	21/03	/24	202	21/03/	24		
Sampling Da	ite			11:15	5			11:1	.5		12	2:41		12:53	3		16:23			
COC Numbe	r			632793-0	2-01		632	793-(02-01	632	279	3-02-01	632	793-0	2-01	632	793-02	-01		
		רואט	rs FIEL	LD BLANK 2	CLOS	SED	FIELD I	BLAN 2	IK OPEN	SIE	VE S	SAMPEL 4	SIE\	/E SAN 5	VIPLE	SIEV	E SAM 6	PLE	QC Ba	atch
Parameter																				
Subcontract	Parameter	N/A	N	ATTACH	IED		AT	TACH	HED	A	ATTA	ACHED	A	ГТАСН	ED	AT	TACHE	D	A210	877
	BV Labs I	D				Z	N6720		ZN67	21				ZR043	9					
	Sampling	Date				202	21/03/24 16:59	ŀ	2021/0 10:2	3/25 25	,		20	21/03 10:2!	5/25 5					
	COC Num	ber				632	793-02-0)1	632793-	03-02	1		632	2793-0	3-01					
				UNI	TS	SIEVE	CONTR 2	OL	SPIKE SA 2	MPL	.E	QC Batch		F8		QC Ba	atch			
	Paramete	er									l									
	Subcontra	act Para	meter	N/	A	AT	TACHED		ATTAC	HED		A210877	A	TTACH	IED	A223	989			

Core Geoscience Services (Coregeo) Client Project #: MP - QA/QC Site Location: CITY OF WHITEHORSE

GENERAL COMMENTS

Sample ZN6701 [F1] : Please see attachment for Particle Size Distribution results.
Sample ZN6702 [F2] : Please see attachment for Particle Size Distribution results.
Sample ZN6703 [F3] : Please see attachment for Particle Size Distribution results.
Sample ZN6704 [F4] : Please see attachment for Particle Size Distribution results.
Sample ZN6705 [F5] : Please see attachment for Particle Size Distribution results.
Sample ZN6706 [F6] : Please see attachment for Particle Size Distribution results.
Sample ZN6707 [F7] : Please see attachment for Particle Size Distribution results.
Sample ZN6708 [FIELD BLANK CLOSED] : Please see attachment for Particle Size Distribution results.
Sample ZN6709 [FIELD BLANK OPEN] : Please see attachment for Particle Size Distribution results.
Sample ZN6710 [SIEVE CONTROL 1] : Please see attachment for Particle Size Distribution results.
Sample ZN6711 [SIEVE SAMPLE 1] : Please see attachment for Particle Size Distribution results.
Sample ZN6712 [SIEVE SAMPLE 2] : Please see attachment for Particle Size Distribution results.
Sample ZN6713 [SIEVE SAMPLE 3] : Please see attachment for Particle Size Distribution results.
Sample ZN6714 [SPIKE SAMPLE 1] : Please see attachment for Particle Size Distribution results.
Sample ZR0439 [F8] : Please see attachment for Particle Size Distribution results.
Results relate only to the items tested.

Core Geoscience Services (Coregeo) Client Project #: MP - QA/QC Site Location: CITY OF WHITEHORSE

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

Jennifer Villocero, Project Solutions Representative

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

are the state		INVOICE TO:			Report Inf	ornation					Prej	ect Information	_	1500	1000		v
many Name	#12319 Core	Geoscience Services (Coregeo)	Company	Name (oceGe	0			-	A	C012	54		10656 C	00		Bottle Order #:
ctact Name	Sruthee Govin	ndaraj	Contact	iane						PO #				19030_0			T REPORTED IN
Q.858	11 Dolly Varde	en Drive	A52/868							Project #	MP -	QAVQC					632793
	Whitehorse Y	T Y1A6A1							_	Project Name				Chu	in Of Custody Recor	d.	Project Manager
100	(867) 633-401	1Fax	Phone				Fax	_		Ste #				1000		HILL H	Customer Solution
al	srutheetticore	igeo.ca	Enal				1	_	-	Sampled By					C#532793-01-01		212110-2240-024-0346
egulatory Crit	eria			pecal Instructions.		2	-			Analysia Ra	iquested				Turnaround Time	(TAT) Require	5
						rinking Water 7 (Y / N Fibered 7 (Y / N)	cs - Filtration, Microscopy/PSD	ze Distribution ct					Rega (will b Stand Please days Job Sy Durn R	lar (Standard) e appled if Rui lard TAT = 5-7 e note: Standa contact your i worke Rush TA woured	TAT In TAT is not specified Alorking days for mod of TAT for certain tests traject Manager for der T (if applies to antire si	0 I tests I such as 800 an tals ubmitsion) Time Result	d Dickins Furanz an
	Note: For regulate	od drinklog water samples - please use the D	rinking Water Chair	of Custody Form		0 0	DS/	o St ofta					Rush C	onferration Num			
	Sanples	must be kept cool (< 10°C) from time of sample	ing until delivery IS I	IV Loba		1	and and a	222		1 1						(Tail is	0.6/10
Sample	flargode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	Res I	N K	Su					e ur Bo	ries .		Connerts	
		FI	24-Mar-1	11:SO	filter		×		_	_	_	_		_			
		F2	24.Mar.2	1 12:27	filter	\square	X		_		_						
		F3	24-Mir-2	13.01	filter	\square	X		_					-	RECEIVED	WHITEH	IORSE
		F4	24-MU1-2	1 13.30	filter	\square	×		_		_				BYTADU	pcon	ev 160
		FS	24.Mur.2	1 14:02	Filtor		X								202	21 -03- 2	6
		F6	24-Mar 2	1 15:43	filter	\square	X		_	_				_		18	. 1/
		F7	25-Mor-2	1 10:50	filter	\square	X		_		_	_		_	TEMP: 16	110	1151
		Field Blank Closed	24-Mur-2	11.15	water		X		_		_			clie	nt 18	18	18
		Field Blank Open	24-mar-2	111:15	water		X							ad	ded to	oolin	2 medi
		Sieve Contol	24. Mw.	2 16:57	water		X							1SU	st pri	or to	arri
RELING	NUSHED BY (Signal	ture/Print) Dete (V	**************************************	1	RECEN	ED BY D	Constant P	nnes		Data: (OV/MMO	7 11	TTT extraction	a land	-	Lab Use On	ly	

ET COPUS		INVOICE TO:				Report Inte	mation				Project Information		ENCLOSE ALCONG	
town Name	#12319 Core	Geoscience Services (Coregeo)	Concern N	~ 6	re.G.e.	1			Contraction #	C01254	EII#7	SEALON MALENDE VER C	Bottle Order #:
tact Name	Sruthee Govin	ndaraj		Contact Nat		-use	-	_		P0.0			550_000	
2444	11 Dolly Varde	en Drive	-	Address		_				Project #	MP - GA/QC		Marcha Mar Million an Marchard	832793
	(867) 633-401	1 64		Ebona.				~	_	Project Name	-		Chain Of Costsey Record	Project Manager
el .	sruthee@core	1900.ca	_	Enail						Sampled By			C#632795-62-01	Customer Soution
equiatory Crit	eía		<u> </u>	5000	ial instructions		~	<u> </u>		Analysis Ri	eduested		Turnaround Time (TAT) Required
							Fishing Water 7 (Y / N Fished 7 (Y / N)	ics - Filtration. Microscopy/PSD	ze Distribution ct			Regular ((will be a) Standard Protector days - co Job Spect Date Resu	(Standard) TAT salid if Plush TAT is not specified) TAT = 6.7 Wooling days for mail tests is Standard TAT for centen heats such read your Project Manager for details for Risch TAT (if applies to entire submis) test	ee BCD and Doxins Foreig an King Time Fargured
	Note: For regulate	id dilnking water samples - please use If	he Drinking W	Wher Citain an	Custody Form		Field	plast EDS	ontra Si			Rush Corth	matul Number	And by April
1.0.000	Samples	insuit be kept cool (< 10°C) from line of s	angling until o	billionry to BV	Labs		Inquits Netats	Alicro	Subo				. Com	units
BATPR	Belliooe Label	Call Goodd	1 24	Mic 21	11.07	Linha	u 1	X				10.000		
		Situe sumper	2/1	Mr. 71	13:00	in the		1¢						
		sieve sample 2	24.	march	12.08	WAR	+	5		+ + +		+ + -		UTCLIODEE
		Sieve Sample 3	× Kd.	marca	12.41	WAR		1		+ + +			RECEIVED IN W	n Och Ot
		Spike Sampe 1	25.	Mar-21	10:28	water.		X					BY: GYADCA	in contest
		Field Blank Cluse	1224-	Mar. 71	11:15	water			X				2021 -1	13- 26
		Field Blank Open	2 24-	mr.21	11:15	netr			×				17	10 11
		STOVE Sampel 4	24.	Mar.21	12:41	water			X				TEMP: 16.7	10 016_1
		Sleve Granda S	- 24	Mr.71	12:53	white			X				din 18	18 18
		Sherve sample (a	24.	mar.21	16:73	Water			X				added coo	line med
		Steve Control 2	24	Myc21	16:59	Water			x				Just prior	to avin
· RELING	UISHED BY (Signit	turePrint) Det	HI (WIMMOO)	Tim	0.0	RECEIV	EO BY: IS	iptature Pr	(eg)	Data: (m:MAD)	OI Time #jars used a	nd	Lab Use Only	
Cart	nerine	Henry 26-	101-21	15.4	is in	1-Errso) UF	XCC-	_	Louios	14.4+	100000000000000000000000000000000000000		Ver Die

		INVOICE TO:				Report Inf	ormation					Project Inf	formation	1		Only
ompany l	iame #12319 Core	e Geoscience Services (Co	oregeo)	Company N	lame	Core	60	0			Justation #	C01254			2R84 (2016) ADVIENDIE (CALIE)	Bottle Order #:
ontact Na	me Sruthee Govin	ndaraj		Contact Nar		-	_			P	.0.#			C1196	555_COC	
ddress	11 Dolly Vard Whitehorse Y	en Drive T Y1A6A1		- Address			-			P	Yoject #	MP - QA/	QC		Chain Of Custody Record	632763
hone	(867) 633-401	Fax:	A	Phone				Fax:		P	itoject Name					Project manage
nail	sruthee@core	igeo.ca		Email						s	ampled By			_	C#532793-03-01	Customer Solutio
Regulat	ory Criteria		-	Spec	cial Instructions		~	-			Analysis Reques	ted			Turnaround Time (TAT) R	equired
	Note: For constants	od dilakina water samalas - alexa			Protode Face		Drinking Water ? (Y/ 3 Filtered ? (Y/N)	tics - Filtration, Microscopy/PSD	ize Distribution act					Regi (will) Stan Plea days Job S Date	ular (Standard) TAT be appled / Rush TAT is not specified) dard TAT = 5-7 Working days for most tests. Is note: Sandard TAT for certain tests such as I - contact your Project Manager for details pecific Rush TAT (if apples to entire submission Required	BCD and Dioxins/Furans a)) Required
	Rote: For regulate	enunt be keel cool (< 10%) from	tena of standing to	of Halisson to Bu	Costoby Form		Field (pplas /EDS	ontra ontra					Rush	Confirmation Number	(call lab for #)
5	ample Barcode Label	Sample (Location) Identific	cation (Date Sempled	Time Sampled	Matrix	Regul	Micro	Parti Subo					# of 8	oties Commen	16
		Soilce comple	22	S-Mar.21	10:25	water			X							
		(. ,													RECEIVED IN WHI	TEHORSE
										_					BYMDunc	an(C) 16
								-		_					2021-03-	26
															TEMP: /6/	18/16
															1150 18	18 18
															added mod?	na na al
															when would	Sund
-							+	-				+			Jusi prior	40 ann
20.0	ELINQUISHED BY: (Signat	(urePrint)	Date: (YY/MM	VOD) Time		RECEN	ED BY: IS	lignature/Pr	Set)	-	Date: (YY/MMDD)	Time	F jers used and		Lab Use Only	
Cu	therine H	enn	Zio-Mur.	21 15,6	15 Il	FEDR	TF	KK		20	21/03/27	14:47	not submitted	Time Sensitive	Temperature (°C) on Receipt Oust	dy Seal Intact on Cooler?

ETCHESS.	INVOICE TO:		1		Report In	ormation	i					Project Info	ermation	i i	经济增加的保险	Only
mpany Name #1	12319 Core Geoscience Serv	rices (Coregeo)	Company N	in (me (eoscie	nes	Jenvi	ces.		Juotation #	c	01254	1.1.1		TERMINIATION AND A STATE	Bottle Order #;
stact Name St	uthee Govindaraj I Dolly Varden Drive		Contact Nar	me <u>Aru</u>	thee !	HOYI	nolai	ay'		10.#	ī	MP - QA/Q	C.	C119	9656_COC	632293
W	hitehorse YT Y1A6A1		A307955	_NR	iknow	1 VC	TYI	AGAI		Project # Project Name	-		-			Project Manage
ne <u>(8</u>	67) 633-4011 Fax	- <u> </u>	Phone	8693	32.82	67 1	Fax	-		Ste #	-					Customer Solution
1 50	uthee@coregeo.ca		Email	Stuth	12 QU CI	mene	10.00		1	Jampled By Analysia R	-				C#632793-02-01	Th Deswind
guistory Criteria	5			All the wave a		î	-		· · · · ·						Please provide advance not	ce for rush projects
						Drinking Water ? (Y S Filtered ? (Y / N)	tics - Filtration	ize Distribution						(wi Sta Fie da) Jeb Das	If the applied if Rush TAT is not specified) andard TAT = 5-7 Working days for most test asse note. Standard TAT for certain heats suc ys - contact your Project Manager for details 5 Specific Rush TAT (if applies to entire subm te Required.	Is. th as BOO and Dioxins/Furans an Masion) _ Time Required:
Not	ie: For regulated drinking water samp	iles - please use the Drinki	ng Water Chain of	Custody Form	-	Field D	EDS	de Si ontra						Rust	A Confirmation Number	tradiate for B
No. of Street, or other	Samples must be kept cool (< 10	9°C) from time of sampling u	intil delivery to BV	Labs		sguta etais	RDn	ubco								francisco sur no
Sample Barr	code Label Sample (Locatio	sn) Identification	Date Sampled	Time Sampled	Matrix	8 2	2×	0.0				\vdash		# 01	Boties Con	nments
	F8	4	Lor21/21	1145		NN		V								
			1.													
															RECEIVED IN	WHITEHORSE
										-					BY: MD	uncante
						++	-			++	-				2021	01 22
			/		<u> </u>	++-	-	\vdash							2021	-U4- 1 L
															TELED	
															I FIAIL.	
						T			-							
						H	1			+ +						
* RELINGUES	OFFD BY: (Sincature/Print)	Date: 0Y/M	Tir		BECE	UFD BY: (Sinnature?			Date: 000/MM/	001	Time	Fiars used and		Lab Use Only	
resthor 6	nvindarai	2021/041	122 140	0. 111	ROD	TAT	CF-	in the	V	54/04/	31	0:50	not submitted	Time Sensitive	Temperature (*C) on Becelot	Custody Seel Intact on Cooler?

Sent To: GR Petrology Consultants Inc. 1323 44 Auenue NE

Calgary, AB, T2E 6L5

Tel: (403) 291-3420

33445

COC # C119656-VGRP-01-01

REP	ORT INFORMATIC	DN	The second	Glan v stakt	Alternation	la superiore				AN	ALYSIS REQUESTED	the star	a de la constancia de la c		
Cor	mpany:	Bureau Veritas Laboratories						/PSD							
Ade	dress:	4606 Canada Way, Burnaby, Br	itish Colu	mbia, V5G 1K	5			licroscopy,							
Cor	ntact Name:	Customer Solutions						DS/M							
Em	ail:	customersolutionswest@burea	uveritas.	com, custome	rservice@	bvlabs.com	۱	RD/E							
Pho	one:							ion, X							
BVI	Labs Project #:	C119656						Filtrat							
#	SAMPLE ID		MATRIX	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	SAMPLER INITIALS	# CONT.	Microplastics -					A	DDITIONAL SAM	PLE INFORMATION
1	ZN6701-F1		WATER	2021/03/24	11:50	1	1	х					(P:01)		
2	ZN6702-F2		WATER	2021/03/24	12:27		1	х					(P:01)		
3	ZN6703-F3		WATER	2021/03/24	13:01		1	x					(P:01)		
4	ZN6704-F4		WATER	2021/03/24	13:30		1	х					(P:01)		
5	ZN6705-F5		WATER	2021/03/24	14:02		1	х					(P:01)		
6	ZN6706-F6		WATER	2021/03/24	15:43		1	х					(P:01)		
7	ZN6707-F7		WATER	2021/03/25	10:50		1	x					(P:01)		
8	ZN6708-FIELD	BLANK CLOSED	WATER	2021/03/24	11:15		1	x					(P:01)		
9	ZN6709-FIELD	BLANK OPEN	WATER	2021/03/24	11:15		1	X					(P:01)		
10	ZN6710-SIEVE	CONTROL 1	WATER	2021/03/24	16:57		1	X					(P:01)		
REG	GULATORY CRITER	RIA		SPECIAL INSTR	RUCTIONS										TURNAROUND TIME
				Please inform **Please retui Full-scale anal	BV Labs im n a copy of ysis (EDS, X	mediately if this form w RD, Microsc	you ith th opy)	are not ne repo + partic	accredited fo rt.** le size	r the i	requested test(s).				Rush Required
CO Cus Coo	OLER ID: stody Seal Present stody Seal Intact oling Media Present	YES NO 1 2	3	COOLER ID: Custody Seal Pr Custody Seal Int Cooling Media R	esent ract Present	YES NO	Tei (°	mp: [°] C)	1 2	3	COOLER ID: Custody Seal Present Custody Seal Intact Cooling Media Present	YES NO	1 (°C)	2 3	Date Required Please inform us if rush charges will be incurred.
RE	LINQUISHED BY:	SIGN & PRINT)	DATE:	(YYYY/MM/DD)	TIME: (HH:MM)	REC	EIVED	SY: (SIGN & PRI	NT)		DATE: (YYY)	Y/MM/DD)	TIME: (HH:MM)	
1.К 2.	evin Chong		2021/0)4/23	15:00		1. 2.	Wh	MA.ME	UBA	HABLADU	20210	426	12:8	

BUREAU VERITAS

Sent To: GR Petrology Consultants Inc. 1323 44 Auenue NE

Calgary, AB, T2E 6L5

Tel: (403) 291-3420

CHAIN OF CUSTODY RECORD FOR SUBCONTRACTED WORK

33445

COC # C119656-VGRP-02-01

·										1	0								
REP	PORT INFORMATIO	ON								19	<u> </u>			IALYSIS REQUESTED	T				
Cor	mpany:	Bureau Ve	eritas Lab	ooratories															
Add	dress:	4606 Cana	ida Way	, Burnaby, I	British Colu	umbia, V5G 1K5	5												
Cor	ntact Name:	Customer	Solution	IS] .	Q								
Em	ail:	customers	olutions	west@bur	eauveritas	.com, custome	rservice@	bvlabs.coi	m	ation	py/P								
Pho	one:									Filtr	osco								
BVL	Labs Project #:	C119656	- and a second second							tics -	Micr								
#	SAMPLE ID				MATRIX	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	SAMPLER	# CONT.	Microplas	XRD/EDS/							ADDITIONAL SAN	IPLE INFORMATION
1	ZN6711-SIEVE	SAMPLE 1			WATER	2021/03/24	11:57		1	X							(P:01)		
2	ZN6712-SIEVE	SAMPLE 2			WATER	2021/03/24	12:08		1	X	1				•		(P:01)		
3	ZN6713-SIEVE	SAMPLE 3			WATER	2021/03/24	12:41		1	X							(P:01)		
4	ZN6714-SPIKE	SAMPLE 1			WATER	2021/03/25	10:28		1	×	_						(P:01)		
5	ZR0439-F8				WATER	2021/03/25	10:25		1	+ ×	_					_	(P:01)		
6													+			_			
/					-														
8									+				+						
10													+		+				
REC	ULATORY CRITER	IA				SPECIAL INSTR	UCTIONS	1		-	25			IIII			1		TURNAROUND TIME
						Please inform **Please retur Full-scale analy	BV Labs im n a copy of ysis (EDS, X	mediately i this form v RD, Microso	f you vith ti copy)	are r he re + pai	ot accr port.** rticle si	edited f	or the i	requested test(s).					Rush Required
						F													Date Required
COO	OLER ID:					COOLER ID:		Tural no			-	<u>г т</u>		COOLER ID:	1				
-		YES NO	Toma			Catal Call Da		YES NO		mn.	-		~	Custodu Casl Dassat	YES N		1.	2 3	
Cust	tody Seal Present		- remp	.		Custody Seal Int	act	+		°C)				Custody Seal Intact			p :		Please inform us if rush
Cas	ling Madia Present		- (0)			Cooling Media P	resent	+ + -	- '	()	·			Cooling Media Present			.)		charges will be incurred.
	ing weula Fresent					cooning wiedla i	resent			1.1	ind.	L		cooming media rresent		_			
REL	INQUISHED BY: (S	IGN & PRINT)			DATE	(YYYY/MM/DD)	TIME: ((HH:MM)	REC	CEIVE	D BY: (5	IGN & PF	UNT)		DATE:	(YYYY/M	M/DD)	TIME: (HH:MM)	
1.Ke	evin Chong				2021/0	04/23	15:00		1.	mh	м	A. M	EUB.	A HABLADO	202	IDU	26	8'51	
2.	V								2.							<u> </u>		0.51	

Sent To: University of British Columbia CHAIN OF CUSTODY RECORD FOR SUBCONTRACTED WORK Sally Finora, Frank Forward Bd 6350 Stores Rd (Room 517) Vancouver, BC, V6T 1Z4 Tel: (604) 822-4292 Page 01 of 01

COC # C119656-VUBC-01-01

REPORT INFORMATION						ANALYSIS REQUESTED							
Company: Bureau Veritas Laboratories													
Address: 4606 Canada Way, Burnaby, British Columbia, V5G 1K5													
Cor	tact Name: Customer Solutions		1.49.2	N. S. W. S.	244	1.154	=						
Em	ail: customersolutionswest@bure	eauveritas.	com, custome	rservice@t	ovlabs.com	n	Elzon						
Pho	ne:	× 1919		New York	10.000		zone			1.3.60		See and the second	
BV L	abs Project #: C119656	21.5			N.	-	tics El.						
#	SAMPLE ID	MATRIX	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	SAMPLER INITIALS	# CONT.	PSD - Micromeri					ADDITIONAL SAM	APLE INFORMATION
1	ZN6715-FIELD BLANK CLOSED 2	WATER	2021/03/24	11:15	1412140	1	х		Sala Isl			(P:01)	
2	ZN6716-FIELD BLANK OPEN 2	WATER	2021/03/24	11:15	The addition	1	Х		alles al	2 366 T	S. 854	(P:01)	AND SUMPLY
3	ZN6717-SIEVE SAMPEL 4	WATER	2021/03/24	12:41	California (1	х		10. A 1.	1.000	14 12 51 14	(P:01)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
4	ZN6718-SIEVE SAMPLE 5	WATER	2021/03/24	12:53		1	х		2.45		1. 1891 1.2	(P:01)	Sale and State
5	ZN6719-SIEVE SAMPLE 6	WATER	2021/03/24	16:23	11-11-02	1	X	1000 2000 2000	1990 - A.	S 646 0	14 1982 360	(P:01)	and the second second
6	ZN6720-SIEVE CONTROL 2	WATER	2021/03/24	16:59	like a hora	1	х		1220 38	1. 上語 数	84 C. C. 194	(P:01)	
7	ZN6721-SPIKE SAMPLE 2	WATER	2021/03/25	10:25	A.S. Pak	1	Х		1994 1.99	10 10 10 10	201 (2010) (A.M.	(P: 01)	
8		1	10-20-20-20-20-20-20-20-20-20-20-20-20-20	19-10-10-10-10-10-10-10-10-10-10-10-10-10-		125	1		138 199			1 Carlon Carlon P	Sugar Charles and State
9					100 200 300		100		Sec. 15.		6 2.5		
10					1.1.1.1		1						
REG	ULATORY CRITERIA		SPECIAL INSTR	UCTIONS									TURNAROUND TIME
			Please inform **Please retur Full-scale anal	BV Labs imn n a copy of 1 ysis (EDS, XR	nediately if this form w D, Microsco	you a ith th opy) +	e repo e parti	t accredited for the re ort.** cle size	equested te	st(s).			Rush Required
				and the second									2021/04/12
COOLER ID: COOLER ID: VES NO 1 Custody Seal Present Temp: Custody Seal Intact (°C) Cooling Media Present (°C)				Image: Cooling Media Present Temp: Cooling Media Present (°C)			Date Required Please inform us if rush charges will be incurred.						
RELINQUISHED BY: (SIGN & PRINT) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECE				IVED	BY: (SIGN & PRINT)	1.2.00		DATE: (YYYY/N	MM/DD) TIME: (HH:MM)				
1.Renegie Lampong 2021/0			3/29	1500	1500 1.			Frank Yan			2021/04	101	
2.			all	13 S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.		2.							1

THE UNIVERSITY OF BRITISH COLUMBIA NORMAN B. KEEVIL Institute of Mining Engineering

tel: 604 822 2540 fax: 604 822 5599 517, 6350 Stores Road, Vancouver, BC V6T 1Z4 www.mining.ubc.ca

Report Date:	April 27, 2021				
Company:	Bureau Veritas Laboratories				
Attention:	Customer Solutions 4606 Canada Way Burnaby, B.C., Canada, V5G 1K5 Email: Customersolutionswest@bvlabs.com; customerservice@bvlabs.com				
COC #	C119656-VUBC-01-01				
Date Received:	April 1, 2021				
Analyst:	Frank Yan				
Department Contact:	Frank Yan, frank.yan@ubc.ca; (604) 822-4292				

Description:

Analysis Requested: Particle Size Distribution test for seven water samples Sample ID: ZN6715-FIELD BLANK CLOSED2; ZN6716-FIELD BLANK OPEN2; ZN6717-SIEVE SAMPLE 4; ZN6718-SIEVE SAMPLE 5; ZN6719-SIEVE SAMPLE 6; ZN6720-SIEVE CONTROL 2; ZN6721-SPIKE SAMPLE 2 Instrument used: Micromeritics Elzone II 5390

General Comments:

Representative aliquots of the sample were taken and diluted with filtered background conducting electrolyte and filtered distilled water to obtain samples for testing over two ranges (coarse - \sim 8-200 microns and fine - \sim 1.5 - 32 microns), which were then blended at the overlap to obtain the sample particle size distribution between \sim 1.5 - 200 microns.

Sample ZN6715, ZN6716 and ZN6721 are too clean to close our background solutions. So there are no reports for the three samples.

Please use caution in interpreting percent values since these are based on what you see in the histogram.

Results attached.

Sincerely,

Frank

Micromeritics Instrument Corporation

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 1

Sample: ZN6717 Operator: Frank Submitter: Sublet File: C:\...\ZN6717\BV6717BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:03:03PM Coinc. Correction: Off Smoothing: Off Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 65,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

			Report by Oize Table	
Low Particle Diameter (µm)	Incremental Volume Percent	Cumulative Volume Percent	Low Particle Diameter (µm)	Incremental Volume Percent
200.00	0.0	100.0	80.00) 2.9
187.50	0.3	99.7	77.50) 3.1
184.38	0.0	99.7	75.00) 3.9
181.25	0.0	99.7	72.50) 4.5
178.13	0.2	99.5	70.00) 5.2
175.00	0.0	99.4	67.50) 5.5
162.50	1.1	98.3	65.00) 6.5
159.38	0.3	98.0	62.50) 6.5
156.25	0.1	97.8	60.00) 6.5
153.13	0.0	97.8	57.50) 6.4
150.00	0.4	97.4	55.00) 5.4
146.88	0.1	97.2	52.50) 4.3
143.75	0.1	97.1	50.00) 2.8
140.63	0.1	97.0	47.50) 2.0
137.50	0.3	96.6	45.00) 1.4
134.38	0.1	96.5	42.50) 1.2
131.25	0.1	96.4	40.00) 1.0
128.13	0.2	96.2	37.50	0.8
125.00	0.3	95.9	35.00) 0.7
121.88	0.5	95.4	32.50	0.5
118.75	0.2	95.2	30.00	0.3
115.63	0.4	94.8	27.50	0.3
112.50	0.6	94.1	25.00	0.3
109.38	0.5	93.7	22.50	0.3
106.25	0.5	93.2	20.00	0.3
103.13	0.5	92.7	17.50	0.4
100.00	0.6	92.0	15.00	0.5
97.50	0.7	91.4	12.50) 0.4
95.00	1.2	90.2	10.00	0.3
92.50	0.9	09.3 00 1	7.50) 0.3
90.00	0.9	00.4	5.00	y 4.5
07.50	1.4	01.0	2.50	<i>i</i> 4.3
00.00 82.50	1.7	00.3	1.00	, 0.0
02.50	Z.Z	0J.Z		

Report by Size Table

Micromeritics Instrument Corporation

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 2

Sample: ZN6717 Operator: Frank Submitter: Sublet File: C:\...\ZN6717\BV6717BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:03:03PM Coinc. Correction: Off Smoothing: Off Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 65,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

Cumulative Volume Percent	Low Particle Diameter (µm)						
100.0	200.98	93.5	107.93	83.7	82.99	42.5	61.49
99.7	197.67	93.2	106.43	83.1	82.44	40.0	60.54
99.4	173.51	92.9	104.73	82.5	81.90	37.5	59.59
99.1	170.99	92.5	102.32	81.9	81.37	35.0	58.62
98.8	169.11	92.2	100.91	81.3	80.85	32.5	57.62
98.5	167.53	91.9	99.26	80.7	80.34	30.0	56.58
98.2	161.65	91.6	98.11	80.0	79.78	27.5	55.36
97.8	152.87	91.3	97.27	77.5	77.73	25.0	54.06
97.5	151.13	91.0	96.60	75.0	75.95	22.5	52.50
97.2	145.75	90.6	95.85	72.5	74.61	20.0	50.36
96.9	140.11	90.3	95.23	70.0	73.20	17.5	47.24
96.6	137.17	90.0	94.43	67.5	71.92	15.0	42.46
96.2	127.60	89.4	92.75	65.0	70.73	12.5	34.51
95.9	125.11	88.8	91.03	62.5	69.49	10.0	16.18
95.6	123.18	88.1	89.31	60.0	68.30	7.5	6.07
95.3	120.77	87.5	88.21	57.5	67.28	5.0	5.22
95.0	116.69	86.9	87.28	55.0	66.31	2.5	4.39
94.7	115.41	86.3	86.39	52.5	65.35	1.0	3.70
94.4	113.97	85.7	85.51	50.0	64.40	0.1	2.81
94.1	112.32	85.0	84.51	47.5	63.45		
93.8	110.37	84.4	83.71	45.0	62.48		

Report by Volume Percent

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 3

Sample: ZN6717 Operator: Frank Submitter: Sublet File: C:\...\ZN6717\BV6717BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:03:03PM Coinc. Correction: Off Smoothing: Off Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 65,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

Incremental Volume Percent vs. Particle Diameter Graph

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 4

Sample: ZN6717 Operator: Frank Submitter: Sublet File: C:\...\ZN6717\BV6717BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:03:03PM Coinc. Correction: Off Smoothing: Off Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 65,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

Summary Report

Sample Statistics									
	Total Volume 1.2294e+09 µm ³								
	Weighted Statistics (Volume Distribution)								
Mean Median	64.62 64.40	Mode	66.10						
	Geometric Statistic	s (Volume Distri	bution)						
Mean Median	52.36 64.40	Mode	66.10						

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 1

Sample: ZN6718 Operator: Frank Submitter: Sublet File: C:\...\ZN6718\BV6718BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:10:06PM Coinc. Correction: Off Smoothing: Off Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 69,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

			Report by Size Table			
Low Particle Diameter (µm)	Incremental Volume Percent	Cumulative Volume Percent	Low Pari Diamet (μm)	ticle ter	Incremental Volume Percent	Cumulative Volume Percent
187.50	0.5	99.5	8	30.00	2.5	75.9
184.38	0.0	99.5	7	7.50	3.3	72.6
181.25	0.2	99.3	7	5.00	3.9	68.7
178.13	0.0	99.3	7	2.50	4.5	64.2
175.00	0.0	99.3	7	0.00	4.9	59.3
162.50	0.5	98.9	6	7.50	5.2	54.1
159.38	0.0	98.8	6	5.00	5.8	48.2
156.25	0.2	98.6	6	2.50	5.6	42.7
153.13	0.0	98.6	6	0.00	5.9	36.8
150.00	0.4	98.2	5	7.50	5.3	31.5
146.88	0.7	97.5	5	5.00	4.7	26.8
143.75	0.1	97.4	5	2.50	3.4	23.3
140.63	0.2	97.3	5	0.00	2.6	20.8
137.50	0.1	97.2	4	7.50	1.9	18.9
134.38	0.4	96.7	4	5.00	1.3	17.5
131.25	0.3	96.4	4	2.50	1.0	16.5
128.13	0.5	96.0	4	0.00	0.8	15.7
125.00	0.3	95.6	3	7.50	0.6	15.1
121.88	0.5	95.1	3	5.00	0.5	14.5
118.75	0.7	94.4	3	2.50	0.4	14.1
115.63	0.4	94.0	3	0.00	0.3	13.8
112.50	0.6	93.4	2	27.50	0.3	13.5
109.38	0.7	92.8	2	5.00	0.3	13.3
106.25	0.9	91.9	2	2.50	0.3	13.0
103.13	1.0	90.9	2	:0.00	0.3	12.7
100.00	1.2	89.7	1	7.50	0.4	12.3
97.50	1.1	88.6	1	5.00	0.4	11.9
95.00	1.2	87.4	1	2.50	0.4	11.5
92.50	1.5	85.9	1	0.00	0.3	11.2
90.00	1.4	84.5		7.50	0.3	10.8
87.50	1.5	83.0		5.00	5.0	5.8
85.00	2.3	80.7		2.50	5.8	0.0
82.50	2.4	78.3		1.00	0.0	0.0

Report by Size Table

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 2

Sample: ZN6718 Operator: Frank Submitter: Sublet File: C:\...\ZN6718\BV6718BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:10:06PM Coinc. Correction: Off Smoothing: Off Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 69,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

Cumulative Volume Percent	Low Particle Diameter (µm)	Cumulative Volume Percent	ulative Low Particle Cumulative Low Particle Cumulative ume Diameter Volume Diameter Volume cent (μm) Percent (μm) Percent		Cumulative Volume Percent	Low Particle Diameter (µm)	
100.0	196.85	93.5	112.89	83.7	88.58	42.5	62.43
99.7	194.44	93.2	111.44	83.1	87.61	40.0	61.35
99.4	182.62	92.9	110.00	82.5	86.88	37.5	60.32
99.1	171.17	92.5	108.15	81.9	86.28	35.0	59.19
98.8	158.76	92.2	107.06	81.3	85.65	32.5	58.00
98.5	151.98	91.9	106.32	80.7	84.95	30.0	56.80
98.2	149.86	91.6	105.53	80.0	84.16	27.5	55.44
97.8	148.44	91.3	104.44	77.5	81.64	25.0	53.81
97.5	146.31	91.0	103.40	75.0	79.28	22.5	51.80
97.2	137.75	90.6	102.42	72.5	77.46	20.0	49.10
96.9	135.81	90.3	101.73	70.0	75.76	17.5	44.91
96.6	133.17	90.0	100.97	67.5	74.33	15.0	37.27
96.2	129.14	89.4	99.31	65.0	72.95	12.5	18.84
95.9	127.87	88.8	97.97	62.5	71.56	10.0	6.35
95.6	124.65	88.1	96.47	60.0	70.32	7.5	5.44
95.3	122.69	87.5	95.23	57.5	69.16	5.0	4.79
95.0	121.31	86.9	94.22	55.0	67.97	2.5	4.05
94.7	120.20	86.3	93.30	52.5	66.74	1.0	3.42
94.4	118.49	85.7	92.18	50.0	65.78	0.1	2.65
94.1	116.41	85.0	90.89	47.5	64.67		
93.8	114.41	84.4	89.82	45.0	63.54		

Report by Volume Percent

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 3

Sample: ZN6718 Operator: Frank Submitter: Sublet File: C:\...\ZN6718\BV6718BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:10:06PM Coinc. Correction: Off Smoothing: Off Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 69,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

Incremental Volume Percent vs. Particle Diameter Graph

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 4

Sample: ZN6718 Operator: Frank Submitter: Sublet File: C:\...\ZN6718\BV6718BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:10:06PM Coinc. Correction: Off Smoothing: Off Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 69,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

Summary Report

Sample Statistics									
	Total Volum	e 1.6452e+09 µm³							
	Weighted Statistics (Volume Distribution)								
Mean Median	65.38 65.78	Mode	66.10						
	Geometric Statistic	s (Volume Distributio	on)						
Mean Median	50.89 65.78	Mode	66.10						

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 1

Sample: ZN6719 Operator: Frank Submitter: Sublet File: C:\...\ZN6719\BV6719BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:13:47PM Coinc. Correction: Off Smoothing: Off Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 68,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

			Report by Size Table			
Low Particle Diameter (µm)	Incremental Volume Percent	Cumulative Volume Percent	L	ow Particle. Diameter (μm)	Incremental Volume Percent	Cumulative Volume Percent
200.00	0.0	100.0		80.00	2.7	77.8
187.50	0.5	99.5		77.50	3.5	74.3
184.38	0.2	99.3		75.00	3.8	70.5
181.25	0.2	99.2		72.50	4.0	66.5
178.13	0.3	98.8		70.00	4.8	61.7
175.00	0.1	98.8		67.50	5.4	56.3
162.50	0.4	98.3		65.00	6.4	49.9
159.38	0.0	98.3		62.50	6.8	43.1
156.25	0.5	97.8		60.00	7.0	36.1
153.13	0.1	97.7		57.50	6.2	29.9
150.00	0.2	97.5		55.00	5.4	24.5
146.88	0.1	97.4		52.50	4.3	20.2
143.75	0.2	97.2		50.00	2.7	17.5
140.63	0.3	96.9		47.50	1.9	15.6
137.50	0.7	96.1		45.00	1.3	14.3
134.38	0.2	96.0		42.50	1.2	13.1
131.25	0.3	95.6		40.00	0.9	12.3
128.13	0.4	95.2		37.50	0.7	11.6
125.00	0.2	95.0		35.00	0.5	11.1
121.88	0.4	94.6		32.50	0.4	10.7
118.75	0.5	94.1		30.00	0.3	10.4
115.63	0.5	93.6		27.50	0.2	10.2
112.50	0.5	93.1		25.00	0.3	9.9
109.38	0.5	92.6		22.50	0.3	9.6
106.25	0.8	91.8		20.00	0.2	9.4
103.13	0.5	91.4		17.50	0.3	9.1
100.00	0.6	90.8		15.00	0.3	8.8
97.50	0.9	89.9		12.50	0.3	8.4
95.00	0.9	89.1		10.00	0.3	8.1
92.50	1.4	87.7		7.50	0.2	7.9
90.00	1.6	80.1		5.00	3.6	4.3
87.50	1.5	84.6		2.50	4.2	0.0
85.00	2.0	82.6		1.00	0.0	0.0
82.50	2.1	80.5				

Report by Size Table

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 2

Sample: ZN6719 Operator: Frank Submitter: Sublet File: C:\...\ZN6719\BV6719BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:13:47PM Coinc. Correction: Off Smoothing: Off Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 68,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

Cumulative Volume Percent	Low Particle Diameter (µm)						
100.0	200.98	93.5	114.95	83.7	86.39	42.5	62.27
99.7	191.75	93.2	113.17	83.1	85.66	40.0	61.37
99.4	186.13	92.9	111.01	82.5	84.87	37.5	60.50
99.1	180.49	92.5	108.84	81.9	84.10	35.0	59.59
98.8	177.60	92.2	107.60	81.3	83.39	32.5	58.59
98.5	167.06	91.9	106.45	80.7	82.74	30.0	57.54
98.2	158.74	91.6	105.12	80.0	82.05	27.5	56.42
97.8	155.10	91.3	102.58	77.5	79.76	25.0	55.25
97.5	149.75	91.0	100.93	75.0	77.97	22.5	54.00
97.2	143.74	90.6	99.27	72.5	76.36	20.0	52.39
96.9	140.81	90.3	98.41	70.0	74.62	17.5	50.02
96.6	139.80	90.0	97.64	67.5	73.05	15.0	46.52
96.2	138.30	89.4	95.89	65.0	71.72	12.5	40.72
95.9	133.54	88.8	94.46	62.5	70.42	10.0	25.98
95.6	130.91	88.1	93.23	60.0	69.15	7.5	6.53
95.3	128.79	87.5	92.23	57.5	68.02	5.0	5.26
95.0	125.61	86.9	91.26	55.0	66.96	2.5	4.31
94.7	122.78	86.3	90.35	52.5	65.98	1.0	3.56
94.4	120.74	85.7	89.47	50.0	65.03	0.1	2.68
94.1	118.90	85.0	88.15	47.5	64.11		
93.8	117.37	84.4	87.23	45.0	63.18		

Report by Volume Percent

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 3

Sample: ZN6719 Operator: Frank Submitter: Sublet File: C:\...\ZN6719\BV6719BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:13:47PM Coinc. Correction: Off Smoothing: Off Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 68,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

Incremental Volume Percent vs. Particle Diameter Graph

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 4

Sample: ZN6719 Operator: Frank Submitter: Sublet File: C:\...\ZN6719\BV6719BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:13:47PM Coinc. Correction: Off Smoothing: Off Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 68,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

Summary Report

Sample Statistics									
	Total Volum	e 1.6882e+09 µm³							
	Weighted Statistics	s (Volume Distributio	n)						
Mean Median	66.78 65.03	Mode	64.75						
	Geometric Statistic	s (Volume Distributio	on)						
Mean Median	54.70 65.03	Mode	64.75						

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 1

Sample: ZN6720 Operator: Frank Submitter: Sublet File: C:\...\ZN6720\BV6720BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:34:55PM Coinc. Correction: Off Smoothing: 9, 1 Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 11,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

			Report by Olze Table			
Low Particle Diameter (µm)	Incremental Volume Percent	Cumulative Volume Percent		Low Particle Diameter (µm)	Incremental Volume Percent	Cumulative Volume Percent
162 50	19	98.1	-	72 50	19	37.3
159.38	0.7	97.4		70.00	22	35.1
156 25	0.7	96.6		67.50	2.5	32.6
153.13	1.4	95.3		65.00	2.5	30.1
150.00	1.3	94.0		62.50	2.4	27.7
146.88	1.3	92.7		60.00	2.3	25.4
143.75	1.8	90.9		57.50	2.5	23.0
140.63	1.7	89.2		55.00	2.4	20.5
137.50	1.6	87.6		52.50	2.0	18.6
134.38	1.5	86.1		50.00	1.8	16.8
131.25	1.6	84.4		47.50	2.1	14.7
128.13	2.2	82.3		45.00	2.2	12.5
125.00	2.6	79.7		42.50	2.0	10.6
121.88	2.6	77.1		40.00	1.4	9.1
118.75	2.8	74.3		37.50	0.9	8.2
115.63	2.7	71.6		35.00	0.8	7.4
112.50	2.5	69.0		32.50	0.8	6.6
109.38	2.5	66.6		30.00	0.5	6.0
106.25	2.6	64.0		27.50	0.5	5.5
103.13	2.4	61.5		25.00	0.5	5.1
100.00	2.4	59.1		22.50	0.6	4.5
97.50	2.0	57.2		20.00	0.6	3.9
95.00	2.0	55.1		17.50	0.7	3.2
92.50	2.0	53.1		15.00	0.8	2.4
90.00	2.3	50.7		12.50	1.1	1.2
87.50	2.3	48.4		10.00	0.9	0.3
85.00	2.3	46.1		7.50	0.0	0.3
82.50	2.1	44.0		5.00	0.2	0.2
80.00	1.8	42.3		2.50	0.2	0.0
77.50	1.5	40.7		1.00	0.0	0.0
75.00	1.6	39.1				

Report by Size Table

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 2

Sample: ZN6720 Operator: Frank Submitter: Sublet File: C:\...\ZN6720\BV6720BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:34:55PM Coinc. Correction: Off Smoothing: 9, 1 Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 11,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

Cumulative Volume Percent	Low Particle Diameter (µm)						
100.0	170.20	93.5	148.73	83.7	130.12	42.5	80.39
99.7	168.56	93.2	147.95	83.1	129.25	40.0	76.30
99.4	167.66	92.9	147.25	82.5	128.42	37.5	72.80
99.1	166.64	92.5	146.46	81.9	127.63	35.0	69.91
98.8	165.41	92.2	145.93	81.3	126.89	32.5	67.38
98.5	164.19	91.9	145.43	80.7	126.18	30.0	64.91
98.2	162.93	91.6	144.93	80.0	125.37	27.5	62.26
97.8	161.22	91.3	144.42	77.5	122.33	25.0	59.52
97.5	159.93	91.0	143.88	75.0	119.57	22.5	57.01
97.2	158.50	90.6	143.15	72.5	116.70	20.0	54.37
96.9	157.13	90.3	142.60	70.0	113.69	17.5	50.98
96.6	156.14	90.0	142.05	67.5	110.49	15.0	47.82
96.2	155.19	89.4	140.94	65.0	107.50	12.5	44.98
95.9	154.55	88.8	139.80	62.5	104.39	10.0	41.67
95.6	153.91	88.1	138.46	60.0	101.08	7.5	35.40
95.3	153.21	87.5	137.27	57.5	97.94	5.0	24.65
95.0	152.48	86.9	136.07	55.0	94.85	2.5	15.34
94.7	151.75	86.3	134.86	52.5	91.87	1.0	12.11
94.4	151.03	85.7	133.58	50.0	89.21	0.1	4.39
94.1	150.30	85.0	132.20	47.5	86.49		
93.8	149.54	84.4	131.19	45.0	83.74		

Report by Volume Percent

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 3

Sample: ZN6720 Operator: Frank Submitter: Sublet File: C:\...\ZN6720\BV6720BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:34:55PM Coinc. Correction: Off Smoothing: 9, 1 Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 11,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

Incremental Volume Percent vs. Particle Diameter Graph

Elzone II 5390 V3.00

Unit 1

Serial #: 409

Page 4

Sample: ZN6720 Operator: Frank Submitter: Sublet File: C:\...\ZN6720\BV6720BL.SMP Material/Electrolyte Solution: Water Sample / 2 % Sodium Chloride Measurement Principle: Electrical Sensing Zone ASTM Practice E 1617 Compliant

Reported: 4/27/2021 9:34:55PM Coinc. Correction: Off Smoothing: 9, 1 Background Sub.: Off

Comments: The sample was diluted with well-filtered distilled water and sodium chloride solution to get to a proper conductivity and concentration level for testing on the Elzone. Approximately 11,000 particles were counted. Particles were counted over two ranges and blended at the overlap.

Summary Report

Sample Statistics								
Total Volume 2.8189e+08 µm ³								
	Weighted Statistics (Volume Distribution)							
Mean Median	89.48 89.21	Mode	120.8					
	Geometric Statistic	s (Volume Distribu	ution)					
Mean Median	78.87 89.21	Mode	120.8					

XRD, SEM, Elemental and Particle Size Analysis of Seven Solid Samples for Bureau Veritas Laboratories Project #: C119656 GR 33361 2021

GR Petrology Consultants Inc. Suite 8, 1323 – 44th Avenue N.E. Calgary, Alberta T2E 6L5 Tel: 403-291-3420 Fax: 403-250-7212 E-mail: berna.hablado@grpetrology.com

April 2021

Summary of Analyses

Seven solid samples were submitted by Bureau Veritas Laboratories for bulk X-ray Diffraction Analysis (XRD), elemental analysis by X-ray Energy Dispersive Spectrometry (EDS), Scanning Electron Microscopy (SEM) and Particle Size Analysis.

Quantitative elemental analysis was performed by an **Oxford INCA** microanalysis system attached to a **JEOL JSM-6610** scanning electron microscope. The INCA system was designed to obtain standardless quantitative elemental analysis from rough samples by SEM. The INCA system has enhanced light element capabilities, and is able to identify beryllium (Be), and quantify boron (B), and carbon (C).

Particle size analysis was conducted on SEM photomicrographs. Particle size was measured using Image Pro Plus software.

The following Tables, Figures and Plates are included in this report:

- Table A: Bulk Fraction X-Ray Diffraction Data
- Table B: Comparison of Elemental Composition by EDS and XRD
- Table C: Particle Size Data
- Plates 1 to 7: Photographs and EDS Results
- Plate 8: EDS Results for Blank Filter
- Tables 1 to 7: EDS and XRD Results
- Figures 1 to 7: Bulk X-Ray Diffractograms
- Figure 8: Bulk X-Ray Diffractogram for Blank Filter
- Plates PSD-1 to PSD-7: Particle Size Statistics and Photographs

The following samples were analyzed:

- GR-001: ZN6708-Field Blank Closed (2021/03/24 11:15)
- GR-002: ZN6709-Field Blank Open (2021/03/24 11:15)

XRD, SEM, Elemental and Particle Size Analysis of Seven Solid Samples Bureau Veritas Laboratories; Project #: C119656

- GR-003: ZN6710-Sieve Control 1 (2021/03/24 16:57)
- GR-004: ZN6711-Sieve Sample 1 (2021/03/24 11:57)
- GR-005: ZN6712-Sieve Sample 2 (2021/03/24 12:08)
- GR-006: ZN6713-Sieve Sample 3 (2021/03/24 12:41)
- GR-007: ZN6714-Spike Sample 1 (2021/03/25 10:28)

COMPANY:Bureau Veritas LaboratoriesPROJECT #:C119656GR FILE #:GR 33361 2021

TABLE A
BULK FRACTION X-RAY DIFFRACTION DATA

GR Sample #	Sample ID	Qtz	KFd	Plag	Cri	Sil	Kaol	ш	Chl	M-L	Smec	Total Clay
GR-001	ZN6708-Field Blank Closed	tr	-	-	-	-	-	-	-	-	-	-
GR-002	ZN6709-Field Blank Open	tr	-	-	-	tr	-	-	-	-	-	-
GR-003	ZN6710-Sieve Control 1	tr	-	-	-	-	-	-	-	-	-	-
GR-004	ZN6711-Sieve Sample 1	21.9	5.0	24.7	7.9	3.6	11.3	18.4	7.2	-	-	36.9
GR-005	ZN6712-Sieve Sample 2	13.7	10.0	24.6	-	10.2	22.9	13.9	4.7	-	-	41.5
GR-006	ZN6713-Sieve Sample 3	39.5	12.2	7.6	2.8	-	22.2	9.6	6.1	-	-	37.9
GR-007	ZN6714-Spike Sample 1	tr	-	-	-	-	-	-	-	-	-	-
	Qtz - Quartz - SiO ₂			Sil - Silicon C	0xide - SiO ₂				M-L - Mixed L	_ayer		
	KFd - Potassium Feldspar - KAlSi ₃ O	8		Kaol - Kaolini	ite - Al ₂ Si ₂ O ₅ (0	OH)4			Smec - Smec	ctite		
	Plag - Sodium Feldspar - NaAlSi ₃ O ₈			III - Illite - (K,I	H ₃ O)Al ₂ Si ₃ AlO	10(OH)2			Total Clay - k	Kaol+III+ChI+N	1-L+Smec	
	Cri - Cristobalite - SiO ₂			Chl - Chlorite	- (Mg,Fe,Al) ₆	(Si,Al)₄O ₁₀ (OH	I) ₂		tr - trace			

COMPANY:	Bureau Veritas Laboratories
PROJECT #:	C119656
GR PROJECT #:	GR 33361 2021

TABLE BComparison of Elemental Composition by EDS and XRD

GR Sample #	Sample ID	н	с	N	ο	Na	Mg	AI	Si	Ρ	S	CI	к	Ca	Fe	Ni	Cu
	ZNCZ00 Field Plenk Classed	-	26.42	8.48	64.85	-	-	0.14	0.02	-	0.03	-	-	-	0.02	-	0.04
GR-001	ZINO706-FIEld Blank Closed	-	-	-	tr	-	-	-	tr	-	-	-	-	-	-	-	-
	ZNGZOO Field Blank Open	-	25.67	15.95	58.08	-	0.02	0.07	0.02	-	0.09	-	-	0.03	-	-	0.05
GR-002	ZIN6709-Fleid Blank Open	-	-	-	tr	-	-	-	tr	-	-	-	-	-	-	-	-
		•					-										
	ZNGZ10 Sigve Control 1	-	27.38	8.18	64.17	-	-	0.10	0.02	-	0.10	0.01	-	-	-	-	0.04
GR-003	ZING/TU-Sieve Control 1	-	-	-	tr	-	-	-	tr	-	-	-	-	-	-	-	-
CP 004	ZNGZ11 Sigva Sampla 1	-	27.79	6.62	64.93	0.06	0.04	0.12	0.22	-	0.10	-	0.01	0.03	0.04	-	0.06
GK-004	ZNO7 IT-Sieve Sample I	0.41	-	-	48.92	2.17	0.99	10.79	32.00	-	-	-	2.43	-	2.28	-	-
CP 005	ZN6712 Sigva Sampla 2	-	25.82	9.01	64.52	0.07	0.05	0.13	0.28	-	0.06	-	0.01	0.02	0.04	0.04	0.03
GK-005	ZINO/12-Sleve Sample 2	0.53	-	-	49.89	2.16	0.65	12.18	30.39	-	-	-	2.71	-	1.49	-	-
GP-006	ZN6713-Siova Sampla 3	-	28.27	5.70	65.43	0.08	0.06	0.09	0.21	-	0.11	-	0.12	0.03	0.04	-	0.05
GIV-000	Zivor 13-Sieve Sample 5	0.47	-	-	50.12	0.67	0.84	10.02	33.32	-	-	-	2.61	-	1.93	-	-
GP-007	ZN6714-Spike Sample 1	-	28.21	6.05	65.55	-	-	0.08	0.02	-	0.03	-	-	0.01	0.01	-	0.03
GIX-007		-	-	-	tr	-	-	-	tr	-	-	-	-	-	-	-	-
	H - Hydrogen		Mg - Mag	gnesium				CI - Chlo	rine				Cu - Cop	per			
	C - Carbon		Al - Alum	inum				K - Potas	ssium								
	N - Nitrogen		Si - Silicon				Ca - Calcium				tr - trace						
	O - Oxygen		P - Phos	phorus				Fe - Iron					Black - E	DS Analy	sis		
Na - Sodium			S - Sulphur Ni -				Ni - Nickel				Red - Calculated from XRD						

COMPANY:Bureau Veritas LaboratoriesPROJECT #:C119656GR PROJECT #:GR 33361 2021

TABLE C PARTICLE SIZE DATA

GR Sample #	Sample ID	Maximum (µm)	Quartile 3 (µm)	Mean (µm)	Median (µm)	Quartile 1 (µm)	Minimum (µm)	Standard Deviation
GR-001	ZN6708-Field Blank Closed	32.52	0.79	0.85	0.36	0.08	0.01	2.22
GR-002	ZN6709-Field Blank Open	19.52	0.42	0.47	0.19	0.06	0.01	1.35
GR-003	ZN6710-Sieve Control 1	196.48	0.85	3.05	0.34	0.09	0.01	13.50
GR-004	ZN6711-Sieve Sample 1	182.00	4.48	6.42	0.61	0.14	0.01	16.37
GR-005	ZN6712-Sieve Sample 2	276.34	2.55	4.84	0.83	0.33	0.01	17.24
GR-006	ZN6713-Sieve Sample 3	204.42	4.42	6.60	1.12	0.37	0.02	18.89
GR-007	ZN6714-Spike Sample 1	30.29	0.71	0.68	0.25	0.06	0.01	1.86

Summary of XRD Results

X-ray diffraction analysis was conducted on samples GR-001 to GR-007. Trace amounts of silicates were detected in samples GR-001 to GR-003 and GR-007. GR-004 to GR-006 contain silicates that form about 100% of each sample.

Comparison of EDS and XRD Results

In many cases the EDS weight percent calculation for some of the elements is different from the XRD weight percent calculation. EDS analysis identifies and quantifies elements present in both crystalline and non-crystalline components. XRD analysis only detects elements in crystalline compounds because only crystalline components of the sample diffract X-rays. Thus our XRD weight percent calculation can only include those elements present in the crystalline compounds. It must be emphasized that each element identified by X-ray diffraction analysis should also be detected by EDS; however, the reverse is not necessarily true.

Note: Hydrogen (H) can not be detected in EDS analysis; therefore, can not be compared.

Table B summarizes the following comments regarding the comparison of EDS and XRD results.

Sample GR-001 showed a poor correlation between the XRD and EDS results.

A significant difference with respect to oxygen was found in sample GR-001.

• In the elemental analysis, oxygen forms 64.85% of the sample, whereas XRD analysis detected trace amounts of oxygen.

A moderate difference with respect to carbon was found in sample GR-001.

• Carbon was measured at 26.42% in the elemental analysis, while XRD analysis detected no carbon.

A minor difference with respect to nitrogen was found in sample GR-001.

XRD, SEM, Elemental and Particle Size Analysis of Seven Solid Samples Bureau Veritas Laboratories; Project #: C119656

• EDS analysis detected 8.48% nitrogen, while no nitrogen was detected in XRD analysis.

The EDS results for carbon, nitrogen and oxygen are greater than the XRD results indicating the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds.

Sample GR-002 showed a poor correlation between the XRD and EDS results.

Significant differences with respect to carbon and oxygen were found in sample GR-002.

- Carbon was measured at 25.67% in the elemental analysis, while XRD analysis did not detect carbon.
- In the elemental analysis, oxygen forms 58.08% of the sample, while trace amounts of oxygen was detected in XRD analysis.

A moderate difference with respect to nitrogen was found in sample GR-002.

• Nitrogen represents 15.95% in the EDS analysis, while XRD analysis did not detect nitrogen.

The EDS results for carbon, nitrogen and oxygen are greater than the XRD results indicating the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds.

Sample GR-003 showed a poor correlation between the XRD and EDS results.

Significant differences with respect to carbon and oxygen were found in sample GR-003.

- In the elemental analysis, carbon forms 27.38% of the sample, while XRD analysis detected no carbon.
- Oxygen represents 64.17% in the EDS analysis, while XRD analysis detected trace amounts of oxygen.

A minor difference with respect to nitrogen was observed in sample GR-003.

• In the elemental analysis, nitrogen forms 8.18% of the sample, whereas XRD analysis did not detect nitrogen.

The EDS results for carbon, nitrogen and oxygen are greater than the XRD results indicating the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds.

Sample GR-004 showed a moderate correlation between the XRD and EDS results.

Moderate differences with respect to carbon, oxygen, silicon and aluminum were observed in sample GR-004.

- Carbon was measured at 27.79% in the elemental analysis, while no carbon was detected in XRD analysis.
- EDS analysis detected 64.93% oxygen, while 48.92% oxygen was detected in XRD analysis.
- Silicon represents 0.22% in the EDS analysis, while XRD analysis detected 32.00% silicon.
- Aluminum was measured at 0.12% in the elemental analysis, while XRD analysis calculated aluminum to be 10.79%.

Minor differences with respect to nitrogen, sodium, potassium and iron were found in sample GR-004.

- EDS analysis detected 6.62% nitrogen, while XRD analysis detected no nitrogen.
- Sodium represents 0.06% in the EDS analysis, whereas XRD analysis calculated sodium to be 2.17%.
- EDS analysis detected 0.01% potassium, while 2.43% potassium was detected in XRD analysis.
- Iron represents 0.04% in the EDS analysis, whereas XRD analysis calculated iron to be 2.28%.

The EDS results for carbon, nitrogen and oxygen are greater than the XRD results indicating the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. The XRD results for sodium, aluminum, silicon, potassium and iron are greater than the EDS results indicating these elements occur in well-crystalline compounds.

Sample GR-005 showed a moderate correlation between the XRD and EDS results.

Moderate differences with respect to carbon, oxygen, aluminum and silicon were noted in sample GR-005.

- EDS analysis detected 25.82% carbon, while XRD analysis did not detect carbon.
- In the elemental analysis, oxygen forms 64.52% of the sample, while XRD analysis detected 49.89% oxygen.
- EDS analysis detected 0.13% aluminum, while XRD analysis calculated aluminum to be 12.18%.

• Silicon was measured at 0.28% in the elemental analysis, whereas XRD analysis calculated silicon to be 30.39%.

Minor differences with respect to nitrogen, sodium and potassium were observed in sample GR-005.

- In the elemental analysis, nitrogen forms 9.01% of the sample, while no nitrogen was detected in XRD analysis.
- Sodium represents 0.07% in the EDS analysis, whereas XRD analysis calculated sodium to be 2.16%.
- In the elemental analysis, potassium forms 0.01% of the sample, while 2.71% potassium was detected in XRD analysis.

The EDS results for carbon, nitrogen and oxygen are greater than the XRD results indicating the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. The XRD results for sodium, aluminum, silicon and potassium are greater than the EDS results indicating these elements occur in well-crystalline compounds.

Sample GR-006 showed a moderate correlation between the XRD and EDS results.

Moderate differences with respect to carbon, oxygen and silicon were observed in sample GR-006.

- Carbon was measured at 28.27% in the elemental analysis, whereas XRD analysis did not detect carbon.
- Oxygen represents 65.43% in the EDS analysis, while 50.12% oxygen was detected in XRD analysis.
- EDS analysis detected 0.21% silicon, while XRD analysis detected 33.32% silicon.

Minor differences with respect to nitrogen, aluminum and potassium were noted in sample GR-006.

- Nitrogen was measured at 5.70% in the elemental analysis, whereas XRD analysis did not detect nitrogen.
- In the elemental analysis, aluminum forms 0.09% of the sample, while XRD analysis calculated aluminum to be 10.02%.

• EDS analysis detected 0.12% potassium, while 2.61% potassium was detected in XRD analysis.

The EDS results for carbon, nitrogen and oxygen are greater than the XRD results indicating the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. The XRD results for aluminum, silicon and potassium are greater than the EDS results indicating these elements occur in well-crystalline compounds.

Sample GR-007 showed a poor correlation between the XRD and EDS results.

Significant differences with respect to carbon and oxygen were noted in sample GR-007.

- In the elemental analysis, carbon forms 28.21% of the sample, whereas XRD analysis did not detect carbon.
- EDS analysis detected 65.55% oxygen, while XRD analysis detected trace amounts of oxygen.

A minor difference with respect to nitrogen was observed in sample GR-007.

• Nitrogen represents 6.05% in the EDS analysis, whereas XRD analysis did not detect nitrogen.

The EDS results for carbon, nitrogen and oxygen are greater than the XRD results indicating the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds.

GR Petrology usually mounts filter paper on a glass slide for X-ray diffraction analysis. The X-ray beam scans an area of approximately 250mm²; however, the electron beam in the EDS that generates the elemental analysis scans a much smaller area of approximately 6mm². We attempted to obtain the elemental analysis from the most representative area of the sample; however, the irregular distribution of the materials in the sample may have skewed the EDS results in some instances.

Apparent differences in the elemental weight percent calculation of the above-mentioned elements are a function of:

- 1) The presence of non-crystalline components in the sample.
- 2) The difference in the area analysed by both methods.
- 3) The affect of the filter paper on the X-ray diffractograms.

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6708-Field Blank Closed Date Sampled: 2021/03/24 11:15

Description of Samples

GR-001: ZN6708-Field Blank Closed (2021/03/24 11:15)

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-001 consists of aggregates of angular, subangular, subrounded and rounded, clay size to coarse silt size particles. The upper left photograph illustrates the bulk sample on filter paper.

Carbon (C) and oxygen (O) dominate the elemental spectrograph, respectively forming about 26.4% and 64.9% of the sample. Nitrogen (N) is moderately abundant, forming about 8.5% of the sample. Trace to minor amounts of aluminum (Al), silicon (Si), sulphur (S), iron (Fe) and copper (Cu) are present.

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of trace amounts of silicates (**quartz [SiO**₂]).

Elemental analysis shows the sample is mainly composed of carbon, nitrogen and oxygen bearing compounds which represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of aluminum, sulphur, iron and copper bearing compounds were detected during elemental analysis.

The particle size distribution histogram shows a bimodal distribution centering around 0.13 microns and 1.00 microns. Mean particle size was measured at 0.85 microns and median particle size was measured at 0.36 microns. Particles vary in size from 0.01 microns (clay size) to 32.52 microns (coarse silt size). The Quartile 3 size is 0.79 microns and the Quartile 1 size is 0.08 microns. Standard deviation was measured at 2.22 microns.

TABLE 1: EDS and XRD Results Bureau Veritas Laboratories; Project #: C119656; Sample ID: ZN6708-Field Blank Closed; Date Sampled: 2021/03/24 11:15 GR 33361-01 2021

ELEMENTS:

DOMINANT:	C, O	MODERATE: N	
COMMON:	COMMON:		, S, Fe, Cu
COMPOUNDS:			
Formula	Name	Percentage	
SiO ₂	Quartz	trace	

COMMENTS:

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of trace amounts of silicates.

Elemental analysis shows the sample is mainly composed of carbon, nitrogen and oxygen bearing compounds which represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of aluminum, sulphur, iron and copper bearing compounds were detected during elemental analysis.

ABUNDANCE OF COMPOUNDS

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6708-Field Blank Closed Date Sampled: 2021/03/24 11:15

Particle Size Statistics

Size in Micrometers					
Mean	0.853				
Median	0.357				
Maximum	32.515				
Quartile 3	0.789				
Quartile 1	0.085				
Minimum	0.009				
Standard Deviation	2.225				
Mode	0.029				
Sample Variance	4.950				
Kurtosis	95.861				
Skewness	8.476				
Range	32.506				
Standard Error	0.100				
Confidence Level (95%)	0.195				
Sum	426.327				
Count	500				

Histogram Statistics

Microns	Frequency	Cumulative
0.01	0	0.00%
0.02	10	2.00%
0.03	38	9.60%
0.06	48	19.20%
0.13	60	31.20%
0.25	53	41.80%
0.50	83	58.40%
1.00	121	82.60%
2.00	48	92.20%
4.00	26	97.40%
8.00	5	98.40%
16.00	5	99.40%
32.00	2	99.80%
64.00	1	100.00%
More	0	100.00%

1.980	0.038	2.376	0.722	0.109	0.226	0.539	0.927	0.068	0.192
2.335	0.015	1.562	0.405	0.064	0.335	0.438	0.403	0.027	0.223
0.724	0.023	2.001	0.500	0.050	0.134	0.657	1.300	0.033	0.319
0.509	0.025	1.329	0.608	0.082	0.333	0.500	1.241	0.054	0.286
0.387	0.011	1.366	0.342	0.052	0.094	0.316	0.623	0.047	1.342
0.393	0.023	2.099	0.539	0.043	0.120	0.573	1.217	0.029	0.833
0.283	0.029	0.650	0.462	0.021	0.089	0.612	1.327	0.040	0.721
0.265	0.062	0.702	0.341	0.085	0.032	0.285	1.312	0.039	0.564
0.230	0.066	1.601	2.181	0.114	0.165	0.543	0.948	7.612	0.789
0.196	0.070	1.432	2.792	0.014	0.150	0.801	1.797	3.622	0.532
0.372	0.037	0.922	0.666	0.067	0.936	0.707	1.300	2.687	0.890
0.441	0.025	0.585	0.424	0.064	0.568	0.632	1.813	2.269	0.554
0.359	0.041	0.791	0.505	0.261	0.499	0.785	1.035	1.142	0.815
0.289	0.021	0.602	0.569	0.106	0.265	0.137	0.136	0.912	0.552
0 395	0.033	1 063	0 368	0 164	0.136	0 105	0 1 1 9	0.728	0.676
0.555	0.055	0.962	0.505	0.053	0.130	0.243	0.110	0.720	0.580
0.126	0.033	0.502	0.494	0.065	0.115	0.709	0.055	1 809	0.500
0.120	0.011	0.050	0.454	0.005	0.332	0.615	0.055	0.639	0.635
0.137	0.030	0.004	0.101	0.001	0.011	3 866	0.070	2 365	0.017
0.225	0.014	0.412	0.333	0.070	0.037	3.000	0.055	2.303	0.322
0.104	0.020	0.400	0.204	0.078	0.035	3.333	0.140	1 696	0.205
0.101	0.027	0.500	0.014	0.048	0.040	2.577	0.082	1.050	0.005
0.007	0.023	0.014	0.988	0.001	0.239	1 000	0.145	0 201	0.785
0.027	0.018	0.960	0.021	0.101	16 220	1.900	0.039	0.801	0.540
0.041	0.020	0.022	0.402	0.090	11 221	2.373	0.020	0.734	0.405
0.030	0.017	1.072	0.455	0.042	12.221	4.029	0.024	0.971	0.570
0.029	0.012	1.972	0.594	0.057	12.775	2.200	0.000	0.090	0.404
0.032	0.044	0.570	0.203	0.050	3.333	3.990	0.008	1.009	0.528
0.010	0.028	0.403	0.340	1 1 2 2	3.420	1.407	0.079	0.087	0.290
0.045	0.022	0.050	0.055	1.122	2.857	0.933	0.024	0.741	0.469
0.273	0.027	0.854	0.653	1.278	2.267	1.245	0.034	0.348	0.307
0.311	0.029	0.510	0.544	0.881	1.357	1.556	0.031	0.401	0.146
0.095	0.020	0.354	0.328	1.150	1.194	2.079	0.042	0.500	0.320
0.067	0.014	1.063	0.198	0.631	1.595	1.690	0.115	0.281	0.253
0.059	0.009	0.814	0.883	0.445	0.898	1.561	0.033	0.230	0.312
0.057	0.019	0.602	0.677	0.807	0.680	1.687	0.029	0.218	0.155
0.072	0.012	0.602	0.687	0.342	0.601	0.608	0.097	0.242	0.186
0.063	0.024	0.806	0.805	0.147	0.825	1.328	0.055	0.406	0.177
0.095	0.025	0.602	0.365	0.240	0.875	5.781	0.059	0.525	0.161
0.063	0.040	13.641	0.507	0.362	0.435	0.834	0.068	0.349	0.078
0.092	0.019	1.004	0.944	0.107	0.634	1.118	0.123	0.361	0.150
0.037	0.016	0.874	0.698	0.130	0.778	0.960	0.063	0.286	0.054
0.088	0.013	0.833	0.443	0.446	0.632	0.756	0.018	0.348	0.071
0.034	32.515	1.281	0.440	0.091	0.664	0.582	0.098	0.432	0.063
0.039	10.904	0.789	0.222	0.128	0.778	1.253	0.054	0.146	0.099
0.096	16.201	1.459	0.163	0.131	0.623	1.374	0.023	0.586	0.348
0.057	8.223	0.609	0.195	0.745	1.288	0.869	0.043	0.294	0.141
0.127	7.109	0.632	0.142	0.679	1.149	0.539	0.069	0.389	0.067
0.093	6.732	0.354	0.129	0.107	0.601	0.412	0.028	0.286	0.104
0.110	3.421	0.449	0.190	0.199	1.682	0.400	0.028	0.319	0.504
0.105	2.476	1.012	0.084	0.233	0.194	0.888	0.024	0.167	0.140

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6709-Field Blank Open Date Sampled: 2021/03/24 11:15

GR-002: ZN6709-Field Blank Open (2021/03/24 11:15)

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-002 consists of aggregates of angular, subangular, subrounded and rounded, clay size to medium silt size particles. The upper left photograph illustrates the bulk sample on filter paper.

Carbon (C) and oxygen (O) dominate the elemental spectrograph, respectively forming about 25.7% and 58.1% of the sample. Nitrogen (N) is common, forming about 16.0% of the sample. Trace to minor amounts of magnesium (Mg), aluminum (Al), silicon (Si), sulphur (S), calcium (Ca) and copper (Cu) are present.

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of trace amounts of silicates (**quartz [SiO₂]** and **silicon oxide [SiO₂]**).

Elemental analysis shows the sample is mainly composed of carbon, nitrogen and oxygen bearing compounds which represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of magnesium, aluminum, sulphur, calcium and copper bearing compounds were detected during elemental analysis.

The particle size distribution histogram shows a skewed unimodal distribution centering around 0.50 microns. Mean particle size was measured at 0.47 microns and median particle size was measured at 0.19 microns. Particles vary in size from 0.01 microns (clay size) to 19.52 microns (medium silt size). The Quartile 3 size is 0.42 microns and the Quartile 1 size is 0.06 microns. Standard deviation was measured at 1.35 microns.

TABLE 2: EDS and XRD Results Bureau Veritas Laboratories; Project #: C119656; Sample ID: ZN6709-Field Blank Open; Date Sampled: 2021/03/24 11:15

GR 33361-02 2021

ELEMENTS:

DOMINANT: C, O	
COMMON: N	

_ _ _ _ _ _ _ _ _

MODERATE: MINOR-TRACE: Mg, Al, Si, S, Ca, Cu

Formula	Name	Percentage
SiO ₂	Quartz	trace
SiO ₂	Silicon Oxide	trace

COMMENTS:

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of trace amounts of silicates.

Elemental analysis shows the sample is mainly composed of carbon, nitrogen and oxygen bearing compounds which represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of magnesium, aluminum, sulphur, calcium and copper bearing compounds were detected during elemental analysis.

ABUNDANCE OF COMPOUNDS

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6709-Field Blank Open Date Sampled: 2021/03/24 11:15

Particle Size Statistics

Size in Micrometers				
Mean	0.470			
Median	0.186			
Maximum	19.516			
Quartile 3	0.420			
Quartile 1	0.064			
Minimum	0.010			
Standard Deviation	1.351			
Mode	0.018			
Sample Variance	1.824			
Kurtosis	103.043			
Skewness	9.037			
Range	19.506			
Standard Error	0.060			
Confidence Level (95%)	0.119			
Sum	234.986			
Count	500			

Microns	Frequency	Cumulative
0.01	0	0.00%
0.02	10	2.00%
0.03	44	10.80%
0.06	69	24.60%
0.13	76	39.80%
0.25	93	58.40%
0.50	112	80.80%
1.00) 61 93.00%	
2.00	18	96.60%
4.00	7	98.00%
8.00	7	99.40%
16.00	2	99.80%
32.00	1	100.00%
More	0	100.00%

0.804	0.173	0.072	0.160	0.018	0.924	0.313	0.283	0.470	0.130
0.741	0.191	0.065	0.320	0.016	0.639	0.155	0.216	0.654	0.180
0.664	0.041	0.130	0.180	0.019	0.863	0.431	0.250	0.278	0.228
0.462	0.073	0.237	0.123	0.112	0.623	0.321	0.416	0.197	0.146
0.363	0.050	0.226	0.158	0.057	0.727	0.304	0.474	0.304	0.148
0.409	0.101	0.139	0.147	0.018	0.719	0.185	0.497	0.158	0.202
0.576	0.172	0.101	0.109	0.018	0.780	0.196	0.535	0.224	0.073
0.397	0.099	0.069	0.151	0.011	0.471	0.140	0.286	0.358	0.041
0.515	0.069	0.049	0.171	0.056	0.866	0.155	0.323	0.219	0.020
0.378	0.067	0.041	0.401	0.143	0.639	0.043	0.419	0.206	19.516
0.391	0.101	0.096	0.140	0.135	0.623	0.039	0.342	0.260	8.493
0.555	0.038	0.213	0.084	0.056	0.455	0.089	0.452	0.301	13.650
0.377	0.018	0.042	0.113	0.021	0.337	0.044	0.248	0.407	3.777
0.456	0.043	0.059	0.102	0.047	0.441	0.067	0.429	0.170	5.365
0.251	0.033	0.029	0.125	0.026	0.336	0.043	0.464	0.112	5.489
0.400	0.025	0.034	0.150	0.021	0.325	0.188	0.396	0.130	5.952
0.092	0.021	0.056	0.115	0.024	0.263	0.073	0.249	0.114	3.147
0.184	0.025	0.066	0.234	0.061	0.140	0.116	0.342	7.821	1.710
0.112	0.015	0.126	0.202	0.041	0.086	0.037	0.347	0.502	2.052
0.187	0.023	0.068	0.124	0.016	0.262	0.027	0.609	0.557	1.820
0.190	0.061	0.050	0.057	0.011	0.553	0.043	0.103	0.488	4.306
0.088	0.024	0.051	0.052	0.012	0.429	0.035	0.218	0.515	1.061
0.000	0.024	0.086	0.032	0.012	0.316	0.055	0.094	0.293	1 200
0.122	0.021	0.000	0.058	0.075	0.259	0.001	0.051	0.233	0 765
0.068	0.050	0.053	0.086	0.051	0.280	0.042	0.426	0.253	2 093
0.000	0.030	1 1 2 2	0.000	0.001	0.255	0.365	1 256	0.233	1 044
0.195	0.042	1 17/	0.030	0.100	0.235	0.303	0.640	0.112	0 5 8 5
0.130	0.045	0.678	0.051	0.000	0.140	0.201	0.040	0.492	1 315
0.194	0.041	0.670	0.031	0.051	0.007	0.077	0.636	0.450	0 791
0.050	0.022	0.005	0.051	0.001	0.120	0.051	0.050	0.550	1 061
0.005	0.002	0.000	0.100	0.025	0.105	0.155	0.375	0.180	1 150
0.104	0.010	0.000	0.033	0.020	0.207	0.150	0.432	0.200	0.450
0.170	0.027	0.352	0.040	0.010	0.124	0.005	0.477	0.304	1 000
0.075	0.022	0.419	0.031	0.000	0.105	0.134	0.421	0.322	0.650
0.104	0.010	0.303	0.020	0.046	0.099	7 152	0.596	0.301	0.030
0.004	0.709	0.100	0.010	0.023	0.130	7.430 1 E01	0.540	0.301	0.322
0.024	0.556	0.100	0.030	0.010	0.001	4.301	0.330	0.230	0.750
0.070	0.381	0.138	0.037	0.013	0.140	2,000	0.202	0.297	1 070
0.052	0.404	0.307	0.040	0.022		2.000	0.200	0.040	1.079
0.105	0.312	0.235	0.004	0.020	0.036	2.090 1.00E	0.200	0.114	1.550
0.200	0.230	0.241	0.010	0.097	0.043	2.095	0.343	0.170	0.405
0.195	0.221	0.510	0.054	0.071	0.049	2.405	0.275	0.110	0.474
0.127	0.297	0.107	0.014	0.025	0.117	2.120	0.074	0.094	0.052
0.340	0.291	0.137	0.011	0.045	0.506	1.049	0.542	0.001	0.200
0.570	0.519	0.115	0.029	0.029	0.544	0.040	0.101	0.100	0.900
0.320	0.333	0.1/3		0.002	0.544	0.991	0.231	0.238	0.391
0.380	0.101	0.226	0.051	0.020	0.311	1.5/5	0.220	0.549	0.403
0.271	0.2/3	0.520	0.071		0.240	0.700	0.208	0.400	0.354
0.505	0.158	0.742	0.021		0.392	0.017	0.212	0.143	0.224
0.230	0.190	0.453	0.025	0.015	0.5/5	0.943	0.432	0.089	0.080
0.110	0.058	0.263	0.031	0.033	U.4/8	0.432	0.260	0.191	0.600

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6710-Sieve Control 1 Date Sampled: 2021/03/24 16:57

GR-003: ZN6710-Sieve Control 1 (2021/03/24 16:57)

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-003 consists of aggregates of angular, subangular, subrounded and rounded, clay size to fine sand size particles. The upper left photograph illustrates the bulk sample on filter paper.

Carbon (C) and oxygen (O) dominate the elemental spectrograph, respectively forming about 27.4% and 64.2% of the sample. Nitrogen (N) is moderately abundant, forming about 8.2% of the sample. Trace to minor amounts of aluminum (Al), silicon (Si), sulphur (S), chlorine (Cl) and copper (Cu) are present.

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds or there is insufficient sample. X-ray diffraction analysis shows the crystalline components of the sample consist of trace amounts of silicates (quartz [SiO₂]).

Elemental analysis shows the sample is mainly composed of carbon, nitrogen and oxygen bearing compounds which represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of aluminum, sulphur, chlorine and copper bearing compounds were detected during elemental analysis.

The particle size distribution histogram shows a polymodal distribution centering around 0.03 microns, 1.00 microns, 8.00 microns, 32.00 microns and 256.00 microns. Mean particle size was measured at 3.05 microns and median particle size was measured at 0.34 microns. Particles vary in size from 0.01 microns (clay size) to 196.48 microns (fine sand size). The Quartile 3 size is 0.85 microns and the Quartile 1 size is 0.09 microns. Standard deviation was measured at 13.50 microns.

TABLE 3: EDS and XRD Results Bureau Veritas Laboratories; Project #: C119656; Sample ID: ZN6710-Sieve Control 1; Date Sampled: 2021/03/24 16:57 GR 33361-03 2021

ELEMENTS:

DOMINANT:	C, O	MODERATE: N	J	
COMMON:		MINOR-TRACE: AI, S	Si, S, Cl, Cu	
COMPOUNDS:				
Formula	Name	Percentage		
SiO ₂	Quartz	trace		

COMMENTS:

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of trace amounts of silicates.

Elemental analysis shows the sample is mainly composed of carbon, nitrogen and oxygen bearing compounds which represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of aluminum, sulphur, chlorine and copper bearing compounds were detected during elemental analysis.

ABUNDANCE OF COMPOUNDS

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6710-Sieve Control 1 Date Sampled: 2021/03/24 16:57

Particle Size Statistics

Size in Micrometers				
Mean	3.048			
Median	0.343			
Maximum	196.479			
Quartile 3	0.850			
Quartile 1	0.089			
Minimum	0.010			
Standard Deviation	13.498			
Mode	0.027			
Sample Variance	182.205			
Kurtosis	146.162			
Skewness	11.099			
Range	196.469			
Standard Error	0.604			
Confidence Level (95%)	1.186			
Sum	1524.041			
Count	500			

Microns	Frequency	Cumulative
0.01	0	0.00%
0.02	10	2.00%
0.03	44	10.80%
0.06	41	19.00%
0.13	63	31.60%
0.25	64	44.40%
0.50	81	60.60%
1.00	84	77.40%
2.00	32	83.80%
4.00	17	87.20%
8.00	24	92.00%
16.00	14	94.80%
32.00	18	98.40%
64.00	5	99.40%
128.00	1	99.60%
256.00	2	100.00%
More	0	100.00%

196.479	19.400	0.500	0.132	0.033	0.310	0.120	0.064	0.572	0.825
54.338	25.042	0.280	0.104	0.027	0.072	0.091	0.103	1.086	0.500
65.968	18.004	0.922	0.070	0.025	0.196	0.027	0.089	0.920	0.344
31.698	26.947	0.406	0.052	0.020	0.547	0.048	0.055	0.486	0.398
39.147	19.893	0.211	0.032	0.082	0.383	0.151	0.059	0.461	0.471
33.406	26.753	0.443	0.085	0.045	0.057	0.090	0.101	0.555	1.004
15.167	23.963	0.228	1.342	0.025	0.085	0.051	0.077	0.861	0.304
18.626	9.402	0.354	1.172	0.035	0.191	0.046	0.153	0.334	0.286
21.618	16.260	0.899	0.801	0.018	0.051	0.180	0.088	0.707	0.805
34.023	8.884	0.149	0.969	0.012	0.040	0.122	0.029	0.774	0.794
11.432	4,534	0.133	0.594	0.028	0.080	0.091	0.017	0.716	0.244
18.324	1.200	0.249	0.585	0.015	0.114	0.060	0.019	0.458	0.256
12,229	1.265	0.243	0.746	0.016	0.208	0.157	0.025	0.487	3,165
10 065	4 327	0.136	0.582	0.010	0.177	0.106	0.025	0.802	3 300
7 798	3 606	0.130	0.502	0.012	0.113	0.100	0.035	0.539	1 416
7 500	0.801	0.131	0.713	0.020	0.113	0.270	0.021	0.335	0 906
3/1 537	1 281	0.214	0.502	0.010	0.054	0.154	0.020	0.425	1 /192
10 / 127	1.201	1 055	0.055	0.022	0.007	0.058	0.015	0.304	1 252
20.268	0.800	0.000	0.405	0.035	0.055	0.100	0.031	0.750	0.603
10 506	0.800	1 1 2 2	0.100	0.018	0.070	0.073	0.019	1 177	0.093
12 071	1 077	0.765	0.200	0.017	0.040	0.008	0.030	0.755	0.009
12.971	1.077	0.703		0.027	0.410	0.022	0.047	0.755	0.597
20 571	0.447	0.307	0.397	0.020	0.331	0.021	0.024	0.452	0.303
20.571	0.032	0.751	0.339	0.029	0.470	0.030	0.027	0.805	0.039
10 202	4.104	0.050	0.555	0.022	0.250	0.025	0.024	0.257	0.300
10.302	1.200	0.731	0.458	0.010	0.130	0.074	0.078	2.515	0.400
4.371	1.562	0.551	0.560	0.013	0.187	0.327	0.079	3.853	0.388
2.176	1.166	0.382	0.322	0.012	0.410	0.123	0.028	3.360	0.363
5.459	1.217	0.252	0.397	0.012	0.304	0.097	0.030	0.071	0.593
6.266	6.077	0.846	0.223	0.026	0.257	0.145	0.013	3.903	0.510
8.241	0.829	0.356	0.167	0.022	0.401	0.038	0.035	2.269	0.388
4.990	1.153	0.252	0.100	0.029	0.682	0.100	0.035	6.100	0.334
6.240	0.662	0.243	0.226	0.027	0.064	0.14/	0.021	3.247	0.186
5.945	0.442	0.307	0.511	1.631	0.090	0.054	0.036	2.739	0.236
4.990	0.663	0.128	0.019	1.138	0.091	0.068	0.018	2.486	0.222
4.998	0.534	0.092	0.613	0.965	0.212	0.051	0.015	2.309	0.213
4.463	0.427	0.287	0.155	2.338	0.280	0.069	22.234	1.837	0.453
3.725	0.881	0.410	0.109	1.468	0.181	0.069	2.574	0.802	0.230
4.286	1.341	0.339	0.173	0.647	0.138	0.054	1.048	0.521	0.152
2.634	0.654	0.270	0.377	0.796	0.103	0.160	1.804	1.152	0.202
181.400	0.467	0.097	0.450	0.473	0.052	0.086	1.289	0.912	0.225
14.401	0.507	0.074	0.490	0.731	0.095	0.019	1.975	0.376	0.045
5.235	0.327	0.062	0.190	0.530	0.060	0.084	0.389	0.639	0.178
5.099	0.341	0.137	0.265	0.667	0.128	0.089	0.489	0.492	0.240
22.969	0.382	0.120	0.063	0.228	0.057	0.038	0.506	0.499	0.276
21.384	0.502	0.141	0.172	0.212	0.086	0.024	0.663	0.754	0.225
10.826	0.525	0.061	0.139	0.247	0.069	0.094	1.013	0.865	0.302
5.235	0.521	0.145	0.067	0.060	0.146	0.119	0.517	0.631	0.459
4.025	0.310	0.064	0.042	0.048	0.070	0.105	1.229	0.486	0.151
4.903	0.710	0.068	0.043	0.091	0.089	0.093	0.202	0.473	0.163
11.044	0.543	0.207	0.051	0.353	0.048	0.074	0.534	0.563	0.240

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6711-Sieve Sample 1 Date Sampled: 2021/03/24 11:57

GR-004: ZN6711-Sieve Sample 1 (2021/03/24 11:57)

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-004 consists of aggregates of angular, subangular, subrounded and rounded, clay size to fine sand size particles. The upper left photograph illustrates the bulk sample on filter paper.

Carbon (C) and oxygen (O) dominate the elemental spectrograph, respectively forming about 27.8% and 64.9% of the sample. Nitrogen (N) is moderately abundant, forming about 6.6% of the sample. Trace to minor amounts of sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), sulphur (S), potassium (K), calcium (Ca), iron (Fe) and copper (Cu) are present.

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds with minor amounts of crystalline compounds present or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of about 100% silicates (albite [NaAlSi₃O₈], quartz [SiO₂], illite [(K,H₃O)Al₂Si₃AlO₁₀(OH)₂], kaolinite [Al₂Si₂O₅(OH)₄], cristobalite [SiO₂], clinochlore [(Mg,Fe,Al)₆(Si,Al)₄O₁₀(OH)₂], microcline [KAlSi₃O₈] and silicon oxide [SiO₂]).

Carbon, nitrogen and part of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of sulphur, calcium and copper bearing compounds were detected during elemental analysis.

The particle size distribution histogram shows a polymodal distribution centering around 1.00 microns, 8.00 microns and 64.00 microns. Mean particle size was measured at 6.42 microns and median particle size was measured at 0.61 microns. Particles vary in size from 0.01 microns (clay size) to 182.00 microns (fine sand size). The Quartile 3 size is 4.48 microns and the Quartile 1 size is 0.14 microns. Standard deviation was measured at 16.37 microns.

TABLE 4: EDS and XRD Results Bureau Veritas Laboratories; Project #: C119656; Sample ID: ZN6711-Sieve Sample 1; Date Sampled: 2021/03/24 11:57

GR 33361-04 2021

ELEMENTS:

DOMINANT: C, O	MODERATE: N
COMMON:	MINOR-TRACE: Na, Mg, Al, Si, S, K, Ca,
	Fe. Cu

COMPOUNDS:

Formula	Name	Percentage		
NaAlSi ₃ O ₈	Albite	24.7%		
SiO ₂	Quartz	21.9%		
(K,H ₃ O)Al ₂ Si ₃ AlO ₁₀ (OH) ₂	Illite	18.4%		
Al ₂ Si ₂ O ₅ (OH) ₄	Kaolinite	11.3%		
SiO ₂	Cristobalite	7.9%		
(Mg,Fe,Al) ₆ (Si,Al) ₄ O ₁₀ (OH) ₂	Clinochlore	7.2%		
KAISi ₃ O ₈	Microcline	5.0%		
SiO2	Silicon Oxide	3.6%		
		100.0%		

COMMENTS:

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds with minor amounts of crystalline compounds present or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of about 100% silicates.

Carbon, nitrogen and part of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of sulphur, calcium and copper bearing compounds were detected during elemental analysis.

ABUNDANCE OF COMPOUNDS

Fe, Cu

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6711-Sieve Sample 1 Date Sampled: 2021/03/24 11:57

Particle Size Statistics

Size in Micrometers				
Mean	6.420			
Median	0.611			
Maximum	181.999			
Quartile 3	4.484			
Quartile 1	0.141			
Minimum	0.012			
Standard Deviation	16.374			
Mode	0.027			
Sample Variance	268.100			
Kurtosis	33.436			
Skewness	4.833			
Range	181.987			
Standard Error	0.732			
Confidence Level (95%)	1.439			
Sum	3210.116			
Count	500			

Microns	Frequency	Cumulative
0.01	0	0.00%
0.02	5	1.00%
0.03	34	7.80%
0.06	37	15.20%
0.13	38	22.80%
0.25	51	33.00%
0.50	67	46.40%
1.00	77	61.80%
2.00	30	67.80%
4.00	30	73.80%
8.00	48	83.40%
16.00	30	89.40%
32.00	21	93.60%
64.00	22	98.00%
128.00	9	99.80%
256.00	1	100.00%
More	0	100.00%

181.999	0.716	61.385	20.863	0.393	0.040	1.216	0.320	0.562	0.643
77.820	0.831	61.931	26.215	0.275	0.021	0.892	0.341	0.241	0.378
67.594	0.960	61.397	19.906	0.200	0.064	1.208	0.691	0.086	0.675
29.451	1.802	46.459	14.714	0.095	0.023	0.901	0.550	0.076	0.175
49.091	0.143	22.773	39.217	0.071	0.030	0.915	0.313	0.081	0.084
19.846	1.289	17.195	22.677	0.045	0.019	0.727	0.197	0.077	0.348
22.022	0.794	12.795	17.335	0.121	0.020	0.528	0.233	0.113	0.695
39.019	0.400	12.498	25.000	0.030	0.012	0.469	0.210	0.141	0.373
24.328	2.462	10.132	21.225	0.055	0.024	0.806	0.140	0.210	0.605
15.717	1.435	7.741	11.885	0.075	0.017	0.447	0.246	0.098	0.485
51.114	0.700	7.647	12.298	0.033	0.038	0.520	0.251	0.146	0.329
8.051	0.904	8.799	21.541	0.047	0.039	0.343	0.117	0.074	0.194
4.916	0.128	7.165	8.500	0.024	0.036	0.453	0.121	0.132	0.357
5.151	0.525	15.199	7.433	0.015	0.031	0.474	0.162	0.099	0.127
23.843	0.291	8.001	7.280	0.041	0.027	0.284	0.250	0.145	0.113
7.543	0.257	8.139	10.012	0.036	0.050	0.461	0.141	0.108	0.326
8.172	0.521	4.948	5.831	0.023	0.022	0.534	0.127	0.064	0.177
4.518	73.012	4.806	68.377	0.014	16.903	0.380	2.927	0.064	0.452
9.498	35.456	5.826	64.245	0.013	11.164	0.168	0.804	0.036	0.708
4.121	5.763	4.138	71.735	0.018	0.850	0.364	0.868	0.044	0.237
5.613	7.181	10.273	38.774	0.032	1.135	0.275	0.831	0.109	0.169
4.041	6.537	4.991	22.099	0.017	2.127	0.368	0.960	0.064	0.193
6.344	3.111	4.079	12.445	0.027	1.603	0.194	0.667	0.058	0.175
5.966	2.561	5.188	18.139	0.019	1.229	0.186	0.855	0.059	0.179
5.111	1.921	3.211	13.852	0.030	1.449	0.119	0.620	0.050	0.084
6.446	1.903	3.412	21.068	0.028	0.770	0.146	0.331	0.034	0.042
6.007	5.334	2.031	15.401	0.027	0.687	0.241	0.729	0.057	0.027
1.738	4.780	1.664	54.120	0.025	0.778	0.534	0.301	0.027	0.274
2.871	1.581	2.272	13.200	0.016	0.731	0.294	0.474	0.090	0.145
2.020	3.114	3.609	10.469	0.035	1.099	0.484	0.267	0.061	0.130
2.020	5.731	3.739	10.984	0.024	1.092	0.266	0.405	0.031	0.033
2.458	4.472	2.716	5.882	0.023	1.493	0.105	0.247	0.048	0.090
2.080	0.500	3.061	11.962	0.028	0.539	0.213	0.559	0.044	0.089
5.421	2.110	2.894	11.089	0.064	0.701	0.193	0.507	0.016	0.123
14.271	1.020	89.443	12.108	0.289	0.701	3.462	0.233	5.103	0.141
3.516	1.972	83.918	10.830	0.199	0.401	2.129	0.387	0.680	0.060
1.720	1.221	99.562	5.855	0.140	1.042	2.260	0.409	0.737	0.057
1.829	0.806	57.630	5.604	0.298	0.836	1.177	0.322	0.976	0.052
1.188	1.655	36.003	5.546	0.088	0.716	0.295	0.132	0.619	0.054
0.859	1.414	50.596	5.632	0.117	0.260	0.970	0.412	0.693	0.061
0.515	1.100	51.442	5.886	0.114	0.641	0.617	0.163	0.591	0.161
0.688	7.061	38.243	7.871	0.069	0.667	0.671	0.202	0.699	0.080
0.373	4.082	36.895	3.650	0.039	0.453	0.671	0.271	0.705	0.072
0.954	0.943	24.683	5.142	0.026	0.694	0.424	0.313	0.407	0.054
0.597	2.354	20.156	12.806	0.018	0.407	0.709	0.275	0.456	0.251
0.686	2.642	44.162	6.315	0.016	0.302	0.500	0.140	0.862	0.044
0.458	3.711	51.313	5.886	0.012	0.575	0.491	0.094	0.592	0.093
0.829	0.900	52.794	7.211	0.020	0.267	0.355	0.187	0.439	0.132
0.750	0.860	38.422	2.600	0.035	0.467	0.398	0.173	0.193	0.027
1.110	1.200	36.235	6.325	0.035	0.401	0.518	0.057	0.185	0.037

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6712-Sieve Sample 2 Date Sampled: 2021/03/24 12:08

GR-005: ZN6712-Sieve Sample 2 (2021/03/24 12:08)

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-005 consists of aggregates of angular, subangular, subrounded and rounded, clay size to medium sand size particles. The top photomicrograph (Plate PSD-5) shows the sample also contains elongated (rod like) particles. The upper left photograph illustrates the bulk sample on filter paper.

Carbon (C) and oxygen (O) dominate the elemental spectrograph, respectively forming about 25.8% and 64.5% of the sample. Nitrogen (N) is moderately abundant, forming about 9.0% of the sample. Trace to minor amounts of sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), sulphur (S), potassium (K), calcium (Ca), iron (Fe), nickel (Ni) and copper (Cu) are present.

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds with minor amounts of crystalline compounds present or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of about 100% silicates (albite [NaAlSi₃O₈], kaolinite [Al₂Si₂O₅(OH)₄], illite [(K,H₃O)Al₂Si₃AlO₁₀(OH)₂], quartz [SiO₂], silicon oxide [SiO₂], microcline [KAlSi₃O₈] and clinochlore [(Mg,Fe,Al)₆(Si,Al)₄O₁₀(OH)₂]).

Carbon, nitrogen and part of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of sulphur, calcium, nickel and copper bearing compounds were detected during elemental analysis.

The particle size distribution histogram shows a slightly skewed unimodal distribution centering around 1.00 microns. Mean particle size was measured at 4.84 microns and median particle size was measured at 0.83 microns. Particles vary in size from 0.01 microns (clay size) to 276.34 microns (medium sand size). The Quartile 3 size is 2.55 microns and the Quartile 1 size is 0.33 microns. Standard deviation was measured at 17.24 microns.

TABLE 5: EDS and XRD Results Bureau Veritas Laboratories; Project #: C119656; Sample ID: ZN6712-Sieve Sample 2; Date Sampled: 2021/03/24 12:08

GR 33361-05 2021

ELEMENTS:

DOMINANT: C, O COMMON:

MODERATE: N MINOR-TRACE: Na, Mg, Al, Si, S, K, Ca, Fe, Ni, Cu

COMPOUNDS:

Formula	Name	Percentage	
NaAlSi ₃ O ₈	Albite	24.6%	
Al ₂ Si ₂ O ₅ (OH) ₄	Kaolinite	22.9%	
(K,H ₃ O)Al ₂ Si ₃ AlO ₁₀ (OH) ₂	Illite	13.9%	
SiO ₂	Quartz	13.7%	
SiO ₂	Silicon Oxide	10.2%	
KAISi ₃ O ₈	Microcline	10.0%	
(Mg,Fe,Al) ₆ (Si,Al) ₄ O ₁₀ (OH) ₂	Clinochlore	4.7%	
		100.0%	

COMMENTS:

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds with minor amounts of crystalline compounds present or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of about 100% silicates.

Carbon, nitrogen and part of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of sulphur, calcium, nickel and copper bearing compounds were detected during elemental analysis.

ABUNDANCE OF COMPOUNDS

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6712-Sieve Sample 2 Date Sampled: 2021/03/24 12:08

Particle Size Statistics

Size in Micrometers				
Mean	4.843			
Median	0.827			
Maximum	276.343			
Quartile 3	2.548			
Quartile 1	0.329			
Minimum	0.009			
Standard Deviation	17.244			
Mode	0.806			
Sample Variance	297.359			
Kurtosis	137.386			
Skewness	10.141			
Range	276.334			
Standard Error	0.771			
Confidence Level (95%)	1.515			
Sum	2421.502			
Count 500				

Microns	Frequency	Cumulative
0.01	0	0.00%
0.02	5	1.00%
0.03	15	4.00%
0.06	20	8.00%
0.13	27	13.40%
0.25	39	21.20%
0.50	64	34.00%
1.00	107	55.40%
2.00	78	71.00%
4.00	57	82.40%
8.00	35	89.40%
16.00	19	93.20%
32.00	17	96.60%
64.00	11	98.80%
128.00	4	99.60%
256.00	1	99.80%
More	1	100.00%

21.967	0.940	0.181	0.057	0.400	65.843	30.056	20.684	0.756	1.265
6.820	0.603	0.293	0.039	0.412	43.533	14.577	9.647	0.792	2.052
13.440	0.528	0.205	0.049	0.361	33.715	23.068	18.016	0.461	0.640
3.440	0.354	0.322	0.077	0.316	40.017	23.032	5.799	1.609	1.118
5.609	0.760	0.125	0.086	0.707	25.640	13.873	5.534	0.525	0.707
3.395	0.891	0.304	0.074	0.447	24.559	6.483	4.854	0.829	1.342
1.298	0.500	0.864	0.110	1.500	16.440	9.098	6.325	0.728	0.806
2.530	0.602	0.291	0.029	2.081	6.966	4.649	14.496	0.371	0.922
1.531	0.645	0.206	0.015	1.030	5.968	4.180	5.799	0.236	0.600
1.874	0.620	0.330	0.075	19.841	8.021	7.120	6.250	1.358	0.806
2.642	0.269	0.500	0.073	10.560	7.122	4.413	3.913	0.601	0.500
0.966	0.278	0.640	0.059	4.922	3.701	4.362	7.616	0.785	0.671
1.297	0.268	0.141	0.028	4.538	5.100	2.167	9.804	0.488	0.762
0.783	0.402	0.087	0.030	9.451	3.324	3.269	276.343	0.514	0.707
0.632	0.197	0.080	0.023	3.826	2.802	1.213	69.086	0.447	0.806
1.140	0.240	0.158	0.031	6.524	2.062	1.537	6.562	0.546	0.671
1.006	0.120	0.175	0.054	4.375	2.209	1.067	2.761	0.287	0.297
0.750	0.362	0.162	0.081	10.288	3.162	3.659	3.640	0.485	0.239
1.662	0.671	0.381	0.078	5.030	1.063	1.333	3.913	0.345	0.085
1.262	0.349	0.389	86.293	7.604	1.487	3.060	2.305	0.309	0.145
0.806	0.322	0.509	14.073	3.504	0.906	0.601	3.640	0.183	0.112
0.716	0.653	0.207	8.927	2.947	0.922	1.067	3.288	0.181	0.038
0.500	0.723	0.156	30.514	4.508	0.922	1.537	5.130	0.270	0.042
0.986	0.340	0.108	3.298	1.282	1.077	1.434	4.257	0.167	0.057
0.711	0.394	0.137	4.428	0.680	1.204	0.333	2.151	0.487	0.037
0.150	0.213	0.783	2.773	1.258	2.500	0.833	15.000	0.229	0.038
0.361	0.283	0.395	3.847	0.811	2.818	0.527	2.305	24.411	0.019
0.224	0.380	0.351	3.162	3.829	1.709	0.833	1.750	23.439	0.009
0.335	0.447	0.284	2.508	0.955	1.924	1.302	1.677	6.378	0.054
0.532	0.221	0.215	2.302	1.179	1.237	2.088	1.581	4.588	0.037
0.472	0.234	0.183	1.910	4.830	0.781	0.687	1.346	3.607	0.029
1.166	0.184	0.314	1.600	2.749	2.040	1.213	1.031	3.523	0.015
1.063	0.224	0.320	2.693	0.825	0.583	1.269	0.707	1.811	0.025
0.851	0.553	0.186	2.600	1.342	0.949	0.333	1.768	3.265	0.012
0.224	1.172	0.102	1.442	3.543	0.949	0.745	8.290	1.836	0.022
0.250	1.227	0.174	1.581	2.448	1.304	0.601	8.038	0.608	0.013
0.250	1.169	0.338	0.900	1.135	2.202	0.471	0.687	2.818	0.035
0.100	0.767	0.139	1.772	0.736	0.806	0.850	0.691	2.900	0.064
0.100	0.897	0.066	0.762	0.667	0.608	0.373	1.110	1,780	0.038
0.206	0.691	0.127	2,702	1.268	0.510	0.745	0.723	1.980	0.024
0.112	0 505	0.167	2 285	0 400	0 361	1 667	0.603	1 204	0.052
0 447	0 763	0.065	0 583	0 521	158 518	1 213	0 723	2 025	0.021
4 083	0 700	0.000	0.505	0.929	48 997	66 574	0.603	1 931	0.021
3 328	0 380	0 105	1 389	3 884	23 411	56 166	1 657	2 214	0.029
1 700	0.416	0.092	5 886	1 202	37 711	40 147	0 471	1 030	0.035
1.204	0.534	0.149	0.922	1,294	28,178	40 307	0.657	1,166	0.021
1.714	0.324	0.048	0.860	0.854	15.816	49,882	1,194	1.300	0.031
0.833	0.390	0.129	0,906	0.745	12.671	54,397	0,588	1.476	0.040
0.894	0.251	0.067	0.922	0.333	12.000	57,987	2,373	1.304	0.036
0.716	0.333	0.071	0.583	0.680	17.755	25.164	1.094	0.632	0.032
				2.200					J.J.J.

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6713-Sieve Sample 3 Date Sampled: 2021/03/24 12:41

GR-006: ZN6713-Sieve Sample 3 (2021/03/24 12:41)

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-006 consists of aggregates of angular, subangular, subrounded and rounded, clay size to fine sand size particles. The top and middle photomicrographs (Plate PSD-6) show the sample also contains elongated (rod like) particles. The upper left photograph illustrates the bulk sample on filter paper.

Carbon (C) and oxygen (O) dominate the elemental spectrograph, respectively forming about 28.3% and 65.4% of the sample. Nitrogen (N) is moderately abundant, forming about 5.7% of the sample. Trace to minor amounts of sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), sulphur (S), potassium (K), calcium (Ca), iron (Fe) and copper (Cu) are present.

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds with minor amounts of crystalline compounds present or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of about 100% silicates (quartz [SiO₂], kaolinite [Al₂Si₂O₅(OH)₄], microcline [KAlSi₃O₈], illite [(K,H₃O)Al₂Si₃AlO₁₀(OH)₂], albite [NaAlSi₃O₈], clinochlore [(Mg,Fe,Al)₆(Si,Al)₄O₁₀(OH)₂] and cristobalite [SiO₂]).

Carbon, nitrogen and part of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of sulphur, calcium and copper bearing compounds were detected during elemental analysis.

The particle size distribution histogram shows a polymodal distribution centering around 1.00 microns, 4.00 microns and 128.00 microns. Mean particle size was measured at 6.60 microns and median particle size was measured at 1.12 microns. Particles vary in size from 0.02 microns (clay size) to 204.42 microns (fine sand size). The Quartile 3 size is 4.42 microns and the Quartile 1 size is 0.37 microns. Standard deviation was measured at 18.89 microns.

TABLE 6: EDS and XRD Results

Bureau Veritas Laboratories; Project #: C119656; Sample ID: ZN6713-Sieve Sample 3; Date Sampled: 2021/03/24 12:41

GR 33361-06 2021

ELEMENTS:

DOMINANT: C, O COMMON: MODERATE: N MINOR-TRACE: Na, Mg, Al, Si, S, K, Ca, Fe, Cu

COMPOUNDS:

Formula	Name	Percentage
SiO ₂	Quartz	39.5%
Al ₂ Si ₂ O ₅ (OH) ₄	Kaolinite	22.2%
KAISi ₃ O ₈	Microcline	12.2%
(K,H ₃ O)Al ₂ Si ₃ AlO ₁₀ (OH) ₂	Illite	9.6%
NaAlSi ₃ O ₈	Albite	7.6%
(Mg,Fe,Al) ₆ (Si,Al) ₄ O ₁₀ (OH) ₂	Clinochlore	6.1%
SiO ₂	Cristobalite	2.8%
		100.0%

COMMENTS:

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds with minor amounts of crystalline compounds present or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of about 100% silicates.

Carbon, nitrogen and part of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of sulphur, calcium and copper bearing compounds were detected during elemental analysis.

ABUNDANCE OF COMPOUNDS

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6713-Sieve Sample 3 Date Sampled: 2021/03/24 12:41

Particle Size Statistics

Size in Micrometers				
Mean	6.604			
Median	1.119			
Maximum	204.420			
Quartile 3	4.417			
Quartile 1	0.369			
Minimum	0.018			
Standard Deviation	18.887			
Mode	0.215			
Sample Variance	356.718			
Kurtosis	48.077			
Skewness	6.175			
Range	204.402			
Standard Error	0.845			
Confidence Level (95%)	1.660			
Sum	3302.043			
Count	500			

Microns	Frequency	Cumulative
0.02	0	0.00%
0.03	9	1.80%
0.06	14	4.60%
0.13	26	9.80%
0.25	44	18.60%
0.50	64	31.40%
1.00	82	47.80%
2.00	58	59.40%
4.00	69	73.20%
8.00	57	84.60%
16.00	37	92.00%
32.00	16	95.20%
64.00	10	97.20%
128.00	11	99.40%
256.00	3	100.00%
More	0	100.00%

104.881	10.430	1.112	2.973	0.254	0.063	0.323	64.196	2.874	0.117
55.636	4.003	0.560	1.709	0.195	0.060	0.226	64.500	3.495	8.314
55.650	11.829	1.360	1.844	0.144	0.038	0.330	65.284	4.964	2.322
56.419	6.752	0.295	2.040	0.154	0.057	0.525	66.188	2.174	1.808
55.267	5.002	0.134	2.433	0.083	0.029	0.690	64.080	0.888	2.216
50.475	3.758	0.209	4.565	0.063	0.099	0.501	32.377	3.756	1.351
54.189	6.069	0.402	204.420	0.269	0.027	0.390	9.512	1.920	0.710
42.442	2.575	0.234	92.704	0.252	0.018	0.735	5.148	1.797	1.042
24.748	2.433	0.165	31.304	0.226	0.145	0.241	8.604	1.035	0.449
9.812	1.143	0.200	19.105	0.183	0.075	20.871	4.220	1.119	1.016
28.151	4.219	1.020	12.876	0.191	0.028	8.372	10.734	0.931	0.840
12.526	0.915	1.032	24.061	0.324	0.208	3.828	7.883	1.548	0.548
25.055	3.687	0.376	10.742	0.152	0.144	7.259	4.859	0.523	1.351
30.968	2.304	0.730	5.906	0.107	0.088	3.095	2.267	0.940	0.536
34.796	2.020	0.538	2.778	0.175	0.036	2.545	6.283	1.312	0.209
13.234	2.634	0.312	4.123	0.154	0.040	2.699	4.743	0.528	0.944
16.925	1.348	148.594	13.206	0.134	0.024	3.542	2.911	0.907	0.540
14.472	1.597	28.001	20.192	0.071	0.025	4.601	2.386	0.860	0.793
6.379	1.152	24.645	13.979	0.167	0.084	1.160	3.219	0.560	0.417
7.063	2.308	22.906	7.725	0.067	0.034	4.472	2.539	1.040	0.564
7.976	2.124	23.601	11.764	0.128	0.066	1.753	2,713	0.444	0.534
5 689	1 879	11 812	5 660	0.050	0.614	3 672	8 290	0 447	0 359
6 6 5 4	3 750	13 813	3 863	0.026	0.653	1 818	4 622	0.788	0.555
18 868	2 365	21 498	1 887	0.020	0.000	1 754	2 236	0.700	0.705
6 4 9 1	2.303	21.450	4 079	0.114	0.340	1 365	1 014	0.245	0.334
10 233	0 769	1/ 21/	6 812	0.075	0.440	0 3 2 0	2 8 2 8	1 610	0.105
5 657	2 803	5 680	6 2 2 3	0.055	0.455	0.320	1 2/0	0.544	0.754
3 887	2.000	2.00J 8./190	1 833	0.234	0.705	0.402	1 500	0.344	0.210
6.067	11 / 71	6 2 2 9	6 800	0.001	0.302	0.914	1 213	0.422	0.200
1 116	0.87/	10 668	2 200	0.034	0.715	1 050	0 808	0.431	0.455
1 962	6 285	6 402	1 207	0.054	0.550	0.600	2 8 5 2	0.215	0.205
2 427	1 972	5 570	5 2 9 1	0.003	0.071	0.099	2.000	0.200	0.272
1 0 2 2	4.972	0 0 0 0	J.381 4 707	0.077	0.403	0.709	2 007	0.171	0.450
1.055	4.404	3.000	4.707	0.020	0.175	0.925	2.007	0.363	0.555
1.209	2.049 1 200	5.055 1 027	2.552	0.400	0.391	0.609	0.745	0.799	0.508
2.750	4.599	4.057	6.099 6.096	0.950	0.509	0.091	100 205	0.702	0.100
2.759	4.725	0.490	2,000	0.272	0.000	0.000	11 650	1.700	0.404
14.182	2.072	3./38	2.000	0.254	0.940	0.973	2 206	0.841	0.154
2.072	1.000	2.004	2.552	0.100	0.550	0.012	5.590 2.124	0.305	0.241
5.075	2.151	2.541	1.012	0.225	0.301	0.701	2.124	0.501	0.240
100.901	0.810	Z.884	1.970	0.054	0.371	0.005	2.304	0.709	0.404
12.143	0.465	5.200	1.281	0.358	0.530	0.961	3.223	0.720	0.332
15.780	0.956	1.897	1.000	0.099	0.763	0.651	1.286	0.718	0.468
9.460	1.030	8.022	2.843	0.056	0.912	0.215	2.124	0.201	0.534
6.027	1.665	3.6//	1.414	0.049	0.363	0.609	2.308	0.326	0.308
8.244	0.970	4.294	1.649	0.040	0.342	0.418	5.151	0.605	0.433
9.923	0.418	3.84/	0.801	0.030	0.595	1.809	13.348	0.244	0.243
3.488	0.190	2.800	0.418	0.112	0.141	0./38	1./20	0.113	0.603
3.687	0.416	1.442	0.541	0.237	0.342	66.236	1./20	0.117	0.734
4.716	0.377	1.166	0.496	0.170	0.098	65.918	2.527	0.108	0.331
4.474	0.638	4.833	0.215	0.072	0.215	65.094	9.341	0.072	0.737

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6714-Spike Sample 1 Date Sampled: 2021/03/25 10:28

GR-007: ZN6714-Spike Sample 1 (2021/03/25 10:28)

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-007 consists of aggregates of angular, subangular, subrounded and rounded, clay size to medium silt size particles. The upper left photograph illustrates the bulk sample on filter paper.

Carbon (C) and oxygen (O) dominate the elemental spectrograph, respectively forming about 28.2% and 65.6% of the sample. Nitrogen (N) is moderately abundant, forming about 6.1% of the sample. Trace to minor amounts of aluminum (Al), silicon (Si), sulphur (S), calcium (Ca), iron (Fe) and copper (Cu) are present.

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of trace amounts of silicates (**quartz [SiO**₂]).

Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace to minor volumes of nitrogen, aluminum, sulphur, calcium, iron and copper bearing compounds were detected during elemental analysis.

The particle size distribution histogram shows a bimodal distribution centering around 0.06 microns and 1.00 microns. Mean particle size was measured at 0.68 microns and median particle size was measured at 0.25 microns. Particles vary in size from 0.01 microns (clay size) to 30.29 microns (medium silt size). The Quartile 3 size is 0.71 microns and the Quartile 1 size is 0.06 microns. Standard deviation was measured at 1.86 microns.

TABLE 7: EDS and XRD Results Bureau Veritas Laboratories; Project #: C119656; Sample ID: ZN6714-Spike Sample 1; Date Sampled: 2021/03/25 10:28 GR 33361-07 2021

ELEMENTS:

DOMINAN	IT: C, O	MODERATE: N	
СОММО	N:	MINOR-TRACE: AI, S	Si, S, Ca, Fe, Cu
COMPOUNDS:			
Formula	Name	Percentage	
SiO ₂	Quartz	trace	

COMMENTS:

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of trace amounts of silicates.

Elemental analysis shows the sample is mainly composed of carbon, nitrogen and oxygen bearing compounds which represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of aluminum, sulphur, calcium, iron and copper bearing compounds were detected during elemental analysis.

ABUNDANCE OF COMPOUNDS

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6714-Spike Sample 1 Date Sampled: 2021/03/25 10:28

Particle Size Statistics

Size in Micrometers				
Mean	0.682			
Median	0.253			
Maximum	30.289			
Quartile 3	0.711			
Quartile 1	0.057			
Minimum	0.009			
Standard Deviation	1.855			
Mode	0.014			
Sample Variance	3.441			
Kurtosis	148.238			
Skewness	10.732			
Range	30.280			
Standard Error	0.083			
Confidence Level (95%)	0.163			
Sum	341.224			
Count	500			

Microns	Frequency	Cumulative
0.01	0	0.00%
0.02	20	4.00%
0.03	40	12.00%
0.06	72	26.40%
0.13	58	38.00%
0.25	59	49.80%
0.50	66	63.00%
1.00	106	84.20%
2.00	49	94.00%
4.00	22	98.40%
8.00	4	99.20%
16.00	2	99.60%
32.00	2	100.00%
More	0	100.00%

4.795	1.273	2.773	7.091	0.154	0.753	0.455	0.097	30.289	13.485
3.739	0.367	3.606	3.712	0.128	0.732	0.199	0.156	17.557	1.776
2.137	0.091	2.657	4.868	0.126	0.590	0.178	0.136	8.062	2.740
1.821	0.208	3.060	2.153	0.165	0.752	0.140	0.108	6.201	1.851
1.722	0.209	2.013	3.522	0.159	0.518	0.207	0.035	3.007	2.308
1.571	0.372	1.785	0.887	0.223	0.875	0.143	0.051	1.584	1.531
2.300	0.119	2.215	1.133	0.131	0.872	0.163	0.056	1.508	0.899
1.516	0.053	1.604	0.956	0.110	0.691	0.158	0.035	1.043	1.188
0.825	0.032	2.531	0.843	0.206	0.592	0.096	0.027	1.286	0.699
1.476	0.026	2.025	0.550	0.112	0.525	0.138	0.065	0.582	1.250
2.163	0.073	1.519	0.492	0.049	0.533	0.092	0.057	3.305	3.794
1.501	0.066	1.318	0.899	0.043	0.648	0.332	0.018	0.930	1.809
0.543	0.081	1.261	0.507	0.046	0.665	0.160	0.031	0.849	1.133
1.049	0.118	1.821	0.527	0.025	0.550	0.140	0.035	0.569	1.354
0.730	0.126	1.119	0.401	0.018	0.666	0.109	0.017	0.734	1.597
0.800	0.126	1.389	0.351	0.012	0.314	0.077	0.023	0.600	0.951
0.900	0.170	0.924	0.518	0.032	0.471	0.132	0.053	0.447	1.221
0.418	0.156	0.399	0.846	0.032	0.434	0.067	0.063	0.681	1.093
0.701	0.418	0.424	0.912	0.029	0.441	0.058	0.054	1.092	1.077
0.680	0.026	0.366	0.815	0.056	0.586	0.060	0.035	1.013	0.934
2.022	0.057	0.260	0.809	0.072	0.509	0.036	0.015	0.914	1.256
1.516	0.055	0.364	0.768	0.040	0.377	0.062	0.012	0.312	0.671
0.516	0.026	0.540	0.871	0.033	0.623	0.048	0.050	0.632	0.735
1.794	0.035	0.473	0.677	0.014	0.356	0.037	0.010	0.699	0.967
0.871	0.029	0.455	0.709	0.045	0.490	0.040	0.073	0.144	0.884
0.879	0.088	0.212	0.648	0.010	0.494	0.068	0.047	0.089	0.951
0.475	0.101	0.399	0.709	0.028	0.231	0.020	0.009	0.165	0.977
0.326	0.049	0.540	0.530	0.014	0.227	0.014	0.014	0.080	0.560
0.412	0.063	0.469	0.689	0.014	0.180	0.052	0.014	0.165	1.407
0.385	0.088	0.207	0.874	0.011	0.126	0.022	0.015	0.305	1.816
0.354	0.049	0.164	0.394	0.014	0.115	0.065	0.058	0.288	1.063
0.500	0.059	1.122	0.607	0.012	0.120	0.063	0.019	0.080	0.651
0.837	0.042	0.219	0.771	0.016	0.070	0.044	0.024	0.215	0.794
0.340	0.082	0.359	0.199	0.021	0.080	0.151	0.036	0.268	0.495
0.215	0.176	0.253	1.183	0.020	0.079	0.227	0.043	0.358	0.662
0.100	0.055	0.466	0.561	0.037	0.079	0.148	0.012	0.506	0.759
0.374	0.072	0.490	0.716	0.048	0.057	0.089	0.036	0.256	0.605
0.312	0.051	0.200	0.676	0.030	0.068	0.107	0.066	0.322	0.660
0.286	0.044	0.237	1.281	0.010	0.052	0.117	0.121	0.253	0.759
0.224	0.055	0.313	0.356	0.016	0.100	0.043	0.024	0.215	1.495
0.428	0.071	0.122	0.617	0.016	0.128	0.018	0.034	0.165	0.699
0.492	0.031	0.265	0.646	0.063	0.084	0.033	0.016	0.113	0.483
0.286	0.044	0.334	0.598	0.025	0.049	0.022	0.065	0.170	0.805
0.280	0.024	0.318	0.624	0.020	0.032	0.042	0.027	0.215	3.055
0.358	0.033	0.196	0.925	0.040	0.058	0.050	0.083	0.506	0.699
0.388	0.043	0.127	0.519	0.047	0.024	0.047	0.012	0.165	0.923
1.372	0.037	0.091	0.724	0.042	0.041	0.109	0.042	0.520	1.112
1.126	0.077	0.200	0.512	0.024	0.023	0.027	0.018	0.283	0.666
1.306	0.033	0.098	0.549	0.042	0.157	0.018	0.016	0.253	0.789
0.621	0.044	0.093	0.384	0.080	0.051	0.024	0.014	0.215	0.645

Bureau Veritas Laboratories; Project #: C119656 Sample ID: Blank Filter Paper

XRD, SEM, Elemental and Particle Size Analysis of Seven Solid Samples for Bureau Veritas Laboratories Project #: C119656 GR 33445 2021

GR Petrology Consultants Inc. Suite 8, 1323 – 44th Avenue N.E. Calgary, Alberta T2E 6L5 Tel: 403-291-3420 Fax: 403-250-7212 E-mail: berna.hablado@grpetrology.com

May 2021

Summary of Analyses

Seven solid samples were submitted by Bureau Veritas Laboratories for bulk X-ray Diffraction Analysis (XRD), elemental analysis by X-ray Energy Dispersive Spectrometry (EDS), Scanning Electron Microscopy (SEM) and Particle Size Analysis.

Quantitative elemental analysis was performed by an **Oxford INCA** microanalysis system attached to a **JEOL JSM-6610** scanning electron microscope. The INCA system was designed to obtain standardless quantitative elemental analysis from rough samples by SEM. The INCA system has enhanced light element capabilities, and is able to identify beryllium (Be), and quantify boron (B), and carbon (C).

Particle size analysis was conducted on SEM photomicrographs. Particle size was measured using Image Pro Plus software.

The following Tables, Figures and Plates are included in this report:

- Table A: Bulk Fraction X-Ray Diffraction Data
- Table B: Comparison of Elemental Composition by EDS and XRD
- Table C: Particle Size Data
- Plates 1 to 7: Photographs and EDS Results
- Tables 1 to 7: EDS and XRD Results
- Figures 1 to 7: Bulk X-Ray Diffractograms
- Plates PSD-1 to PSD-7: Particle Size Statistics and Photographs

The following samples were analyzed:

- GR-001: ZN6701-F1 (2021/03/24 11:50)
- GR-002: ZN6702-F2 (2021/03/24 12:27)
- GR-003: ZN6703-F3 (2021/03/24 13:01)
- GR-004: ZN6704-F4 (2021/03/24 13:30)

- GR-005: ZN6705-F5 (2021/03/24 14:02)
- GR-006: ZN6706-F6 (2021/03/24 15:43)
- GR-007: ZN6707-F7 (2021/03/25 10:50)

COMPANY:Bureau Veritas LaboratoriesPROJECT #:C119656GR FILE #:GR 33445 2021

TABLE A
BULK FRACTION X-RAY DIFFRACTION DATA

GR Sample #	Sample ID	Qtz	KFd	Plag	Sil	Kaol	Ш	Chl	M-L	Smec	Total Clay
GR-001	ZN6701-F1	16.2	8.9	13.4	1.0	29.9	14.8	15.8	-	-	60.5
GR-002	ZN6702-F2	22.1	2.8	5.6	1.8	27.4	20.1	20.2	-	-	67.7
GR-003	ZN6703-F3	15.9	8.9	13.1	1.6	29.3	14.4	16.8	-	-	60.5
GR-004	ZN6704-F4	14.7	4.9	15.7	-	18.3	24.1	22.3	-	-	64.7
GR-005	ZN6705-F5	tr	tr	tr	tr	tr	tr	tr	-	-	tr
GR-006	ZN6706-F6		•			NON-CRY	STALLINE				•
GR-007	ZN6707-F7	tr	-	-	-	-	-	-	-	-	-

Qtz - Quartz - SiO₂ KFd - Potassium Feldspar - KAlSi₃O₈ Plag - Sodium Feldspar - NaAlSi₃O₈ Sil - Silicon Oxide - SiO₂ Kaol - Kaolinite - Al₂Si₂O₅(OH)₄ $\label{eq:constraint} \begin{array}{l} \mbox{III} - \mbox{IIIi} + \mbox{III} + \mbox{III} + \mbox{Oh}_3 \mbox{Oh$

COMPANY:	Bureau Veritas Laboratories
PROJECT #:	C119656
GR PROJECT #:	GR 33445 2021

TABLE B Comparison of Elemental Composition by EDS and XRD

GR Sample #	Sample ID	н	с	N	0	Na	Mg	AI	Si	Ρ	s	CI	к	Ca	Ti	Cr	Fe	Ni	Cu
	<u></u>																		
		-	33.00	11.44	51.72	0.33	0.33	0.76	1.37	0.02	0.91	-	0.03	0.02	-	-	0.01	-	0.05
GR-001	2110701-F1	0.68	-	-	46.72	1.17	2.18	15.40	26.21	-	-	-	2.64	-	-	-	5.01	-	-
GR-002	ZN6702-E2	-	45.73	-	44.44	0.47	0.34	1.05	1.93	-	5.50	-	0.10	0.10	-	-	0.24	0.03	0.07
GIX-002	2110702-12	0.71	-	-	45.72	0.49	2.79	15.63	25.99	I.	-	I.	2.28	I.	-	-	6.40	-	-
GR-003	7N6703-F3	-	50.00	-	40.68	-	0.19	0.64	1.55	0.09	6.46	-	0.08	0.05	-	-	0.22	-	0.04
	2110703-13	0.66	-	-	46.38	1.15	2.32	15.42	26.15	-	-	-	2.60	-	-	-	5.33	-	-
GR-004	ZN6704-E4	-	29.87	-	52.59	0.90	0.70	2.28	6.65	0.10	5.41	0.04	0.31	0.29	0.06	-	0.74	-	0.06
011-004	211070414	0.62	-	-	44.01	1.38	3.08	16.28	24.62	-	-	-	2.95	-	-	-	7.07	-	-
					<u>. </u>									-					
GR-005	ZN6705-E5	-	42.36	-	41.23	0.34	0.18	0.68	1.72	0.16	12.80	-	0.09	0.08	-	-	0.28	-	0.08
	211010010	tr	-	-	tr	tr	tr	tr	tr	-	-	-	tr	-	-	-	tr	-	-
											•		•						
GR-006	ZN6706-E6	-	50.39	<u> </u>	33.12	<u> </u>	<u> </u>	-		-	16.18	0.19	-	-	-	-	-	-	0.12
011 000	2.1.01.00 1.0								NON	N-CHR	YSTALL	.INE							
					7										I	T	. 	1	
GR-007	ZN6707-F7	-	70.29	-	25.09	-	0.14	2.37	0.08	-	1.55	0.04	-	0.02	-	0.04	0.15	0.10	0.12
011 001	2.1.07.07.11		-	-	tr	-	-	-	tr	-	-	-	-	-	-	-	-	-	-
-																			
	H - Hydrogen		Al - Alum	ninum					Ca - Cale	cium					Sn - Tin				
	C - Carbon		Si - Silice	on					Ti - Titan	ium									
	N - Nitrogen		P - Phos	phorus					Cr - Chro	omium									
	O - Oxygen		S - Sulph	nur					Fe - Iron						tr - trace				
	Na - Sodium		CI - Chlo	vrine					Ni - Nick	el					Black - E	DS Anal	ysis		
	Mg - Magnesium		K - Pota	ssium					Cu - Cop	per					Red - Ca	alculated	from XRD)	

COMPANY:Bureau Veritas LaboratoriesPROJECT #:C119656GR PROJECT #:GR 33445 2021

TABLE C PARTICLE SIZE DATA

GR Sample #	Sample ID	Maximum (µm)	Quartile 3 (µm)	Mean (µm)	Median (µm)	Quartile 1 (µm)	Minimum (µm)	Standard Deviation
	ZN6701 E1	66.61	2 72	2 14	1.00	0.22	0.02	5 74
GR-001	ZIN0/01-F1	00.01	3.72	3.14	1.00	0.22	0.02	5.74
GR-002	ZN6702-F2	338.01	4.63	4.92	2.37	1.19	0.06	16.28
GR-003	ZN6703-F3	92.58	4.73	4.15	2.07	0.73	0.05	7.19
GR-004	ZN6704-F4	274.26	8.01	7.86	2.61	0.86	0.03	19.69
GR-005	ZN6705-F5	90.53	3.03	2.93	1.14	0.36	0.02	6.35
GR-006	ZN6706-F6	27.85	0.71	0.86	0.28	0.13	0.01	2.49
GR-007	ZN6707-F7	62.54	2.11	2.11	0.71	0.29	0.03	4.50

Summary of XRD Results

X-ray diffraction analysis was conducted on samples GR-001 to GR-007. Samples GR-001 to GR-004 are mainly composed of silicates, forming about 100% of each sample. Trace amounts of silicates were detected in GR-005 and GR-007. GR-006 is a non-crystalline sample.

Comparison of EDS and XRD Results

In many cases the EDS weight percent calculation for some of the elements is different from the XRD weight percent calculation. EDS analysis identifies and quantifies elements present in both crystalline and non-crystalline components. XRD analysis only detects elements in crystalline compounds because only crystalline components of the sample diffract X-rays. Thus our XRD weight percent calculation can only include those elements present in the crystalline compounds. It must be emphasized that each element identified by X-ray diffraction analysis should also be detected by EDS; however, the reverse is not necessarily true.

Note: Hydrogen (H) can not be detected in EDS analysis; therefore, can not be compared.

Table B summarizes the following comments regarding the comparison of EDS and XRD results.

Sample GR-001 showed a poor to moderate correlation between the XRD and EDS results. A significant difference with respect to carbon was found in sample GR-001.

• Carbon was measured at 33.00% in the elemental analysis, while XRD analysis detected no carbon.

Moderate differences with respect to nitrogen, aluminum and silicon were found in sample GR-001.

• EDS analysis detected 11.44% nitrogen, while no nitrogen was detected in XRD analysis.

- Aluminum represents 0.76% in the EDS analysis, while XRD analysis detected 15.40% aluminum.
- In the elemental analysis, silicon forms 1.37% of the sample, whereas XRD analysis calculated silicon to be 26.21%.

Minor differences with respect to oxygen, potassium and iron were noted in sample GR-001.

- In the elemental analysis, oxygen forms 51.72% of the sample, while 46.72% oxygen was detected in XRD analysis.
- Potassium represents 0.03% in the EDS analysis, whereas XRD analysis calculated potassium to be 2.64%.
- EDS analysis detected 0.01% iron, while 5.01% iron was detected in XRD analysis.

The EDS results for carbon, nitrogen and oxygen are greater than the XRD results indicating the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. The XRD results for aluminum, silicon, potassium and iron are greater than the EDS results indicating these elements occur in well-crystalline compounds.

Sample GR-002 showed a poor correlation between the XRD and EDS results.

A significant difference with respect to carbon was observed in sample GR-002.

• Carbon was measured at 45.73% in the elemental analysis, while XRD analysis did not detect carbon.

Moderate differences with respect to aluminum and silicon were observed in sample GR-002.

- Aluminum was measured at 1.05% in the elemental analysis, while 15.63% aluminum was detected in XRD analysis.
- In the elemental analysis, silicon forms 1.93% of the sample, whereas XRD analysis calculated silicon to be 25.99%.

Minor differences with respect to magnesium, sulphur, potassium and iron were found in sample GR-002.

• Magnesium represents 0.34% in the EDS analysis, while XRD analysis calculated magnesium to be 2.79%.

XRD, SEM, Elemental and Particle Size Analysis of Seven Solid Samples Bureau Veritas Laboratories; Project #: C119656

- Sulphur was measured at 5.50% in the elemental analysis, while no sulphur was detected in XRD analysis.
- EDS analysis detected 0.10% potassium, while XRD analysis detected 2.28% potassium.
- Iron represents 0.24% in the EDS analysis, while XRD analysis calculated iron to be 6.40%.

The EDS results for carbon and sulphur are greater than the XRD results indicating the presence of non-crystalline carbon and sulphur bearing compounds. The XRD results for magnesium, aluminum, silicon, potassium and iron are greater than the EDS results indicating these elements occur in well-crystalline compounds.

Sample GR-003 showed a poor correlation between the XRD and EDS results.

A significant differences with respect to carbon was observed in sample GR-003.

• EDS analysis detected 50.00% carbon, while no carbon was detected in XRD analysis.

Moderate differences with respect to aluminum and silicon were noted in sample GR-003.

- Aluminum represents 0.64% in the EDS analysis, while 15.42% aluminum was detected in XRD analysis.
- In the elemental analysis, silicon forms 1.55% of the sample, while XRD analysis calculated silicon to be 26.15%.

Minor differences with respect to oxygen, magnesium, sulphur, potassium and iron were observed in sample GR-003.

- In the elemental analysis, oxygen forms 40.68% of the sample, while XRD analysis calculated oxygen to be 46.38%.
- EDS analysis detected 0.19% magnesium, while XRD analysis detected 2.32% magnesium.
- In the elemental analysis, sulphur forms 6.46% of the sample, whereas XRD analysis did not detect sulphur.
- Potassium was measured at 0.08% in the elemental analysis, while XRD analysis detected 2.60% potassium.
- EDS analysis detected 0.22% iron, while XRD analysis calculated iron to be 5.33%.

XRD, SEM, Elemental and Particle Size Analysis of Seven Solid Samples Bureau Veritas Laboratories; Project #: C119656

The EDS results for carbon and sulphur are greater than the XRD results indicating the presence of non-crystalline carbon and sulphur bearing compounds. The XRD results for oxygen, magnesium, aluminum, silicon, potassium and iron are greater than the EDS results indicating these elements occur in well-crystalline compounds.

Sample GR-004 showed a poor to moderate correlation between the XRD and EDS results. Moderate differences with respect to carbon, aluminum and silicon were observed in sample GR-004.

- In the elemental analysis, carbon forms 29.87% of the sample, while no carbon was detected in XRD analysis.
- Aluminum represents 2.28% in the EDS analysis, whereas XRD analysis calculated aluminum to be 16.28%.
- In the elemental analysis, silicon forms 6.65% of the sample, while 24.62% silicon was detected in XRD analysis.

Minor differences with respect to oxygen, magnesium, sulphur, potassium and iron were observed in sample GR-004.

- Oxygen was measured at 52.59% in the elemental analysis, whereas XRD analysis calculated oxygen to be 44.01%.
- EDS analysis detected 0.70% magnesium, while XRD analysis detected 3.08% magnesium.
- Sulphur was measured at 5.41% in the elemental analysis, while no sulphur was detected in XRD analysis.
- Potassium represents 0.31% in the EDS analysis, while XRD analysis calculated potassium to be 2.95%.
- Iron was measured at 0.74% in the elemental analysis, while 7.07% iron was detected in XRD analysis.

The EDS results for carbon, oxygen and sulphur are greater than the XRD results indicating the presence of non-crystalline carbon, oxygen and sulphur bearing compounds. The XRD results for magnesium, aluminum, silicon, potassium and iron are greater than the EDS results indicating these elements occur in well-crystalline compounds.

Sample GR-005 showed a poor correlation between the XRD and EDS results.

Significant differences with respect to carbon and oxygen were observed in sample GR-005.

- In the elemental analysis, carbon forms 42.36% of the sample, whereas XRD analysis did not detect carbon.
- EDS analysis detected 41.23% oxygen, while XRD analysis detected trace amounts of oxygen.

A moderate difference with respect to sulphur was found in sample GR-005.

• In the elemental analysis, sulphur forms 12.80% of the sample, whereas XRD analysis did not detect sulphur.

The EDS results for carbon, oxygen and sulphur are greater than the XRD results indicating the presence of non-crystalline carbon, oxygen and sulphur bearing compounds.

Sample GR-006 showed no correlation between the XRD and EDS results.

Sample GR-007 showed a poor correlation between the XRD and EDS results.

Significant differences with respect to carbon and oxygen were found in sample GR-007.

• Carbon represents 70.29% in the EDS analysis, while XRD analysis detected no carbon.

A moderate difference with respect to oxygen was found in sample GR-007.

• EDS analysis detected 25.09% oxygen, while XRD analysis detected trace amounts of oxygen.

A minor difference with respect to aluminum was noted in sample GR-007.

• In the elemental analysis, aluminum forms 2.37% of the sample, while XRD analysis detected no aluminum.

The EDS results for carbon, oxygen and aluminum are greater than the XRD results indicating the presence of non-crystalline carbon, oxygen and aluminum bearing compounds.

GR Petrology usually mounts filter paper on a glass slide for X-ray diffraction analysis. The X-ray beam scans an area of approximately 250mm²; however, the electron beam in the EDS that generates the elemental analysis scans a much smaller area of approximately 6mm². We attempted

to obtain the elemental analysis from the most representative area of the sample; however, the irregular distribution of the materials in the sample may have skewed the EDS results in some instances.

Apparent differences in the elemental weight percent calculation of the above-mentioned elements are a function of:

- 1) The presence of non-crystalline components in the sample.
- 2) The difference in the area analysed by both methods.
- 3) The affect of the filter paper on the X-ray diffractograms.

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6701-F1 Date Sampled: 2021/03/24 11:50

Description of Samples

GR-001: ZN6701-F1 (2021/03/24 11:50)

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-001 consists of aggregates of angular, subangular, subrounded and elongated, clay size to very fine sand size particles. The upper left photograph illustrates the bulk sample on filter paper.

Carbon (C) and oxygen (O) dominate the elemental spectrograph, respectively forming about 33.0% and 51.7% of the sample. Nitrogen (N) is common, forming about 11.4% of the sample. Trace to minor amounts of sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), phosphorus (P), sulphur (S), potassium (K), calcium (Ca), iron (Fe) and copper (Cu) are present.

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds with minor amounts of crystalline compounds present or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of about 100% silicates (kaolinite [Al₂Si₂O₅(OH)₄], quartz [SiO₂], clinochlore [(Mg,Fe,Al)₆(Si,Al)₄O₁₀(OH)₂], illite [(K,H₃O)Al₂Si₃AlO₁₀(OH)₂], albite [NaAlSi₃O₈], microcline [KAlSi₃O₈] and silicon oxide [SiO₂]).

Carbon and some of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of phosphorus, sulphur, calcium and copper bearing compounds were detected during elemental analysis.

The particle size distribution histogram shows a skewed unimodal distribution centering around 4.00 microns. Mean particle size was measured at 3.14 microns and median particle size was measured at 1.00 microns. Particles vary in size from 0.02 microns (clay size) to 66.61 microns (very fine sand size). The Quartile 3 size is 3.72 microns and the Quartile 1 size is 0.22 microns. Standard deviation was measured at 5.74 microns.

TABLE 1: EDS and XRD Results

Bureau Veritas Laboratories; Project #: C119656; Sample ID: ZN6701-F1; Date Sampled: 2021/03/24 11:50 GR 33445-01 2021

ELEMENTS:

DOMINANT: C, O COMMON: N MODERATE: MINOR-TRACE: Na, Mg, Al, Si, P, S, K, Ca, Fe, Cu

COMPOUNDS:

Name	Percentage
Kaolinite	29.9%
Quartz	16.2%
Clinochlore	15.8%
Illite	14.8%
Albite	13.4%
Microcline	8.9%
Silicon Oxide	1.0%
	<i>Name</i> Kaolinite Quartz Clinochlore Illite Albite Microcline Silicon Oxide

100.0%

COMMENTS:

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds with minor amounts of crystalline compounds present or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of about 100% silicates.

Carbon and part of oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, nitrogen and oxygen bearing compounds. Trace volumes of phosphorus, sulphur, calcium and copper bearing compounds were detected during elemental analysis.

ABUNDANCE OF COMPOUNDS

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6701-F1 Date Sampled: 2021/03/24 11:50

Particle Size Statistics

Size in Micrometers						
Mean 3.144						
Median	0.995					
Maximum	66.611					
Quartile 3	3.718					
Quartile 1	0.222					
Minimum	0.016					
Standard Deviation	5.743					
Mode	0.100					
Sample Variance	32.983					
Kurtosis	37.181					
Skewness	4.865					
Range	66.595					
Standard Error	0.257					
Confidence Level (95%)	0.505					
Sum	1572.017					
Count	500					

Histogram Statistics

Microns	Frequency	Cumulative
0.02	0	0.00%
0.03	5	1.00%
0.06	25	6.00%
0.13	54	16.80%
0.25	54	27.60%
0.50	55	38.60%
1.00	58	50.20%
2.00	64	63.00%
4.00	67	76.40%
8.00	63	89.00%
16.00	40	97.00%
32.00	12	99.40%
64.00	2	99.80%
128.00	1	100.00%
More	0	100.00%

66.611	7.816	2.024	0.061	0.100	36.477	1.880	0.760	0.612	0.101
28.738	5.025	1.762	0.048	0.056	16.204	3.142	0.956	0.627	0.100
25.719	4.072	1.471	0.031	0.024	8.575	1.217	0.458	0.556	0.035
27.341	5.240	1.133	0.170	0.064	11.091	1.106	0.285	0.537	0.074
22.825	6.280	0.755	0.364	0.016	6.653	1.200	0.703	0.477	0.116
26.130	3.859	0.171	0.127	0.032	3.087	1.465	0.497	0.378	0.233
25.634	7.083	0.372	0.064	0.028	5.216	2.213	0.160	0.372	0.046
21.934	5.731	0.623	0.111	0.020	5.762	1.418	0.240	0.471	0.100
11.705	5.994	5.608	0.048	0.041	12.006	1.176	3.308	0.403	0.736
12.019	5.948	2.440	0.057	0.057	6.034	1.935	2.238	0.239	0.231
17.904	3.640	0.683	0.099	0.060	3.466	1.688	1.901	0.307	0.849
10.858	3.812	0.949	0.069	0.061	4.095	1.052	2.089	0.224	0.185
13.408	2.377	0.941	0.077	0.115	6.270	0.520	0.985	0.281	0.032
13.744	4.500	0.453	0.146	0.065	4.500	1.242	0.645	0.230	0.075
8.692	6.801	0.393	0.078	0.070	3.272	2.355	3.477	0.251	15.381
16.499	7.912	0.420	0.063	11.588	1.754	1.808	1.819	0.189	7.091
12.374	4.742	0.153	0.065	9.405	2.915	1.679	0.846	0.169	7.124
8.944	4.977	0.471	0.039	7.786	3.579	0.730	0.718	0.181	7.686
8.172	3.106	0.594	0.066	6.938	2.915	1.129	1.516	0.450	4.382
10.296	3.231	0.085	0.055	8.207	2.183	0.990	0.669	0.304	4.588
9.718	2.751	0.082	0.122	6.810	1.375	0.881	0.532	0.152	3.931
10.541	2.460	0.059	0.050	7.927	3.553	0.595	0.595	0.149	3.462
14.337	10.243	0.542	0.120	5.660	2.250	23.282	1.734	0.190	3.504
6.037	7.383	0.255	0.198	5.711	1.275	5.437	0.481	0.222	3.693
9.286	2.404	0.333	0.080	6.400	3.147	2.049	0.250	0.127	2.702
8.969	1.643	0.121	0.043	5.996	1.625	2.222	0.655	0.091	5.579
7.667	1.501	0.212	0.162	2.778	6.007	2.956	0.309	0.074	2.419
9.153	1.553	0.101	0.087	4.540	2.250	2.228	0.294	0.115	2.461
5.467	2.746	0.042	0.496	3.023	1.790	1.095	0.150	0.084	2.506
5.935	1.475	0.184	0.239	4.472	1.008	1.056	0.355	0.105	3.805
12.671	2.548	0.130	1.947	4.405	1.521	0.726	0.376	1.722	5.297
3.902	2.132	0.215	0.420	4.013	1.186	1.067	0.197	1.290	3.940
7.008	1.702	1.765	0.383	3.791	2.684	1.399	0.243	0.983	1.886
11.743	0.684	2.001	0.256	3.296	1.591	0.827	0.135	1.182	3.134
9.434	1.306	0.500	0.276	4.342	1.425	0.814	0.081	0.800	2.600
4.346	0.330	0.118	0.131	2.147	1.250	1.560	0.081	0.374	4.251
38.928	0.322	0.105	0.187	4.317	22.596	0.888	0.264	0.591	1.989
12.615	0.931	0.118	0.179	1.820	12.222	0.588	0.144	0.435	2.650
10.218	0.648	0.138	0.093	1.415	8.761	2.803	0.448	0.343	2.138
10.572	0.424	0.085	0.735	1.000	9.337	0.497	0.152	0.325	2.100
13.054	0.200	0.035	0.251	1.070	6.996	0.268	0.126	0.411	1.239
11.287	0.456	0.059	0.246	2.970	5.993	0.219	0.221	0.110	1.100
8.273	0.260	0.053	0.119	2.482	5.571	0.133	0.156	0.078	0.660
8.050	1.067	0.237	0.073	1.651	3.550	0.259	0.122	0.114	0.634
11.585	0.523	0.151	0.103	1.387	4.787	0.685	2.755	0.266	0.634
9.750	0.253	0.100	0.072	0.814	6.610	0.253	1.656	0.110	0.736
7.473	1.732	0.147	0.123	2.301	2.898	0.757	1.457	0.228	0.477
4.301	0.603	0.206	0.053	1.312	4.098	0.348	1.103	0.096	0.875
8.711	0.305	0.133	0.054	0.150	5.713	0.954	0.864	0.091	0.880
5.162	0.769	0.190	0.039	1.172	2.933	0.921	0.802	0.073	0.367

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6702-F2 Date Sampled: 2021/03/24 12:27

GR-002: ZN6702-F2 (2021/03/24 12:27)

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-002 consists of aggregates of angular, subangular and subrounded, clay size to medium sand size particles and diatoms. The upper left photograph illustrates the bulk sample on filter paper.

Carbon (C) and oxygen (O) dominate the elemental spectrograph, respectively forming about 45.7% and 44.4% of the sample. Sulphur (S) is moderately abundant, forming about 5.5% of the sample. Trace to minor amounts of sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), potassium (K), calcium (Ca), iron (Fe), nickel (Ni) and copper (Cu) are present.

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds with minor amounts of crystalline compounds present or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of about 100% silicates (kaolinite [Al₂Si₂O₅(OH)₄], quartz [SiO₂], clinochlore [(Mg,Fe,Al)₆(Si,Al)₄O₁₀(OH)₂], illite [(K,H₃O)Al₂Si₃AlO₁₀(OH)₂], albite [NaAlSi₃O₈], microcline [KAlSi₃O₈] and silicon oxide [SiO₂]).

Carbon and some of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon and sulphur bearing compounds. Trace volumes of calcium, nickel and copper bearing compounds were detected during elemental analysis.

The particle size distribution histogram shows a bimodal distribution centering around 4.00 microns and 512.00 microns. Mean particle size was measured at 4.92 microns and median particle size was measured at 2.37 microns. Particles vary in size from 0.06 microns (clay size) to 338.01 microns (medium sand size). The Quartile 3 size is 4.63 microns and the Quartile 1 size is 1.19 microns. Standard deviation was measured at 16.28 microns.

TABLE 2: EDS and XRD Results

Bureau Veritas Laboratories; Project #: C119656; Sample ID: ZN6702-F2; Date Sampled: 2021/03/24 12:27 GR 33445-02 2021

ELEMENTS:

DOMINANT: C, O COMMON: MODERATE: S MINOR-TRACE: Na, Mg, Al, Si, K, Ca, Fe, Ni, Cu

COMPOUNDS:

Formula	Name	Percentage
Al₂Si₂O₅(OH)₄	Kaolinite	27.4%
SiO ₂	Quartz	22.1%
(Mg,Fe,Al) ₆ (Si,Al) ₄ O ₁₀ (OH) ₂	Clinochlore	20.2%
(K,H ₃ O)Al ₂ Si ₃ AlO ₁₀ (OH) ₂	Illite	20.1%
NaAlSi ₃ O ₈	Albite	5.6%
KAISi ₃ O ₈	Microcline	2.8%
SiO ₂	Silicon Oxide	1.8%
		100.0%

COMMENTS:

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds with minor amounts og crystalline compounds present or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of about 100% silicates.

Carbon and some of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon and sulphur bearing compounds. Trace volumes of calcium, nickel and copper bearing compounds were detected during elemental analysis.

ABUNDANCE OF COMPOUNDS

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6702-F2 Date Sampled: 2021/03/24 12:27

Particle Size Statistics

Size in Micrometers						
Mean 4.920						
Median	2.372					
Maximum	338.009					
Quartile 3	4.632					
Quartile 1	1.192					
Minimum	0.056					
Standard Deviation	16.282					
Mode	0.750					
Sample Variance	265.092					
Kurtosis	353.476					
Skewness	17.566					
Range	337.953					
Standard Error	0.728					
Confidence Level (95%)	1.431					
Sum	2459.823					
Count	500					

Histogram Statistics

Microns	Frequency	Cumulative
0.03	0	0.00%
0.06	2	0.40%
0.13	5	1.40%
0.25	8	3.00%
0.50	27	8.40%
1.00	68	22.00%
2.00	106	43.20%
4.00	133	69.80%
8.00	89	87.60%
16.00	42	96.00%
32.00	14	98.80%
64.00	3	99.40%
128.00	2	99.80%
256.00	0	99.80%
512.00	1	100.00%
More	0	100.00%

3.441	6.395	2.477	18.682	1.194	21.250	2.504	1.736	2.236	0.400
3.383	4.632	1.569	12.000	1.108	10.213	2.872	1.421	6.438	1.400
2.871	3.276	1.923	27.857	0.298	8.381	2.546	0.765	3.073	0.687
2.112	13.017	1.871	26.401	0.713	7.973	2.405	0.951	2.108	0.433
1.750	5.220	2.601	18.385	0.657	7.837	1.951	0.863	3.480	0.640
4.827	5.727	2.734	15.000	0.637	6.295	3.923	0.600	3.018	0.792
3.177	4.238	1.268	9.055	0.875	4.417	2.727	0.743	10.984	0.601
1.498	3.000	1.896	10.817	0.566	5.331	1.506	0.922	7.955	0.849
1.281	4.535	74.887	14.318	0.500	6.368	2.241	11.075	5.791	0.533
0.988	3.360	14.109	11.705	0.566	3.994	2.102	6.560	4.078	18.963
0.987	3.140	11.448	6.083	1.023	3.436	1.088	4.598	3.874	11.421
3.834	4.610	6.021	4.243	0.328	5.034	1.211	3.211	10.447	10.215
2.458	2.474	4.430	20.125	0.590	4.180	1.146	2.369	4.280	11.085
2.326	4.500	6.600	12.728	1.348	3.137	1.265	2.305	3.276	5.940
1.952	4.500	3.553	15.297	0.533	7.338	1.296	2.131	3.287	5.507
1.972	2.668	3.132	8.062	5.473	3.670	0.899	1.681	4.695	5.554
2.652	2.717	2.372	7.000	2.060	5.964	1.193	1.800	3.082	5.824
2.114	2.900	2.475	11.705	2.831	4.851	0.456	1.921	2.779	10.719
2.041	2.247	4.451	5.099	1.915	3.640	0.506	1.548	4.799	4.894
1.500	1.389	2.016	4.123	3.317	4.360	0.645	1.479	1.791	3.592
1.177	1.562	4.123	7.810	2.131	0.089	0.632	1.405	1.611	2.642
0.451	1.942	1.500	4.123	1.822	5.303	0.777	1.287	1.908	2.626
0.621	17.689	1.250	6.403	2.689	0.129	32.244	1.375	7.455	1.529
0.365	8.498	2.236	11.180	1.683	0.098	18.023	0.802	2.601	1.341
0.750	10.160	3.750	3.162	2.040	3.839	11.776	4.421	2.148	2.493
0.481	6.675	3.010	8.062	0.994	3.124	7.529	0.985	1.273	2.343
0.537	7.922	3.750	6.403	1.088	3.111	6.058	0.932	2.943	1.755
0.628	8.427	3.182	6.000	0.916	2.981	10.066	0.420	1.442	2.865
1.486	5.467	1.953	2.000	0.555	4.105	3.969	1.273	1.733	4.421
0.469	6.093	1.414	2.236	0.665	2.256	3.374	0.181	0.716	7.033
0.267	9.004	2.372	30.571	0.506	0.060	3.612	1.103	1.844	2.497
0.140	7.265	1.346	9.547	0.474	1.752	3.897	0.990	1.434	2.875
0.335	4.209	1.275	4.187	1.268	0.056	3.204	0.840	3.663	3.144
0.384	5.967	1.904	6.505	0.653	1.294	5.411	0.279	0.976	3.291
0.412	3.401	1.601	2.326	0.480	1.031	3.495	0.665	1.692	2.975
0.322	4.027	1.000	1.298	0.747	0.901	2.936	0.595	1.476	0.882
14.728	4.681	1.275	2.033	1.501	13.882	3.084	0.303	1.118	3.685
18.457	2.762	1.250	1.367	0.204	12.771	2.438	0.113	1.655	1.666
11.921	2.720	1.458	2.088	0.126	9.410	3.468	0.680	3.093	2.294
15.881	3.853	0.750	1.814	0.626	11.922	2.365	0.128	0.481	1.248
7.653	2.976	0.750	1.187	0.632	7.656	1.628	0.361	0.568	2.049
10.424	5.009	1.000	2.543	0.649	6.590	1.845	0.500	2,219	1.224
6.488	4,905	0.559	3.802	0.312	4,736	2,900	0.069	1.961	1.065
6.090	2 201	0 750	1 437	0.552	5 832	1 601	0.639	1 372	1 598
8 127	2.201	338.009	3 262	0.305	5 370	2 941	66 219	0 706	1 322
<u> </u>	2.040	17 889	2 147	0 202	3 571	2.541	36 518	0 971	1 34/
6.958	2.107	23 022	1 795	0 165	3 808	0 960	8 876	0.271	1 060
4.632	1 164	32 2022	1 5 2 1	0.100	3 406	3 182	6 146	0.860	2 042
7.506	2 177	28 320	1 392	0 140	2.400 2 281	1 921	3 073	1 767	2.042 1 973
7.507	1 573	10 296	1 054	0 322	3 640	1 692	2 687	0 709	1 184
	1.575	10.200	1.001	0.022	5.0.10	1.002	2.007	0.705	

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6703-F3 Date Sampled: 2021/03/24 13:01

GR-003: ZN6703-F3 (2021/03/24 13:01)

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-003 consists of aggregates of angular, subangular, subrounded and elongated, clay size to very fine sand size particles. The upper left photograph illustrates the bulk sample on filter paper.

Carbon (C) and oxygen (O) dominate the elemental spectrograph, respectively forming about 50.0% and 40.7% of the sample. Sulphur (S) is moderately abundant, forming about 6.5% of the sample. Trace to minor amounts of magnesium (Mg), aluminum (Al), silicon (Si), phosphorus (P), potassium (K), calcium (Ca), iron (Fe) and copper (Cu) are present.

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds with minor amounts of crystalline compounds present or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of about 100% silicates (kaolinite [Al₂Si₂O₅(OH)₄], clinochlore [(Mg,Fe,Al)₆(Si,Al)₄O₁₀(OH)₂], quartz [SiO₂], illite [(K,H₃O)Al₂Si₃AlO₁₀(OH)₂], albite [NaAlSi₃O₈], microcline [KAlSi₃O₈] and silicon oxide [SiO₂]).

Carbon and part of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon and sulphur bearing compounds. Trace volumes of phosphorus, calcium and copper bearing compounds were detected during elemental analysis.

The particle size distribution histogram shows a skewed unimodal distribution centering around 4.00 microns. Mean particle size was measured at 4.15 microns and median particle size was measured at 2.07 microns. Particles vary in size from 0.05 microns (clay size) to 92.58 microns (very fine sand size). The Quartile 3 size is 4.73 microns and the Quartile 1 size is 0.73 microns. Standard deviation was measured at 7.19 microns.

TABLE 3: EDS and XRD Results

Bureau Veritas Laboratories; Project #: C119656; Sample ID: ZN6703-F3; Date Sampled: 2021/03/24 13:01 GR 33445-03 2021

ELEMENTS:

DOMINANT: C, O COMMON:

MODERATE: S MINOR-TRACE: Mg, Al, Si, P, K, Ca, Fe, Cu

COMPOUNDS:

Formula	Name	Percentage
Al ₂ Si ₂ O ₅ (OH) ₄	Kaolinite	29.3%
(Mg,Fe,Al) ₆ (Si,Al) ₄ O ₁₀ (OH) ₂	Clinochlore	16.8%
SiO ₂	Quartz	15.9%
(K,H ₃ O)Al ₂ Si ₃ AlO ₁₀ (OH) ₂	Illite	14.4%
NaAlSi ₃ O ₈	Albite	13.1%
KAISi ₃ O ₈	Microcline	8.9%
SiO ₂	Silicon Oxide	1.6%
		100.0%

COMMENTS:

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds with minor amounts of crystalline compounds present or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of about 100% silicates.

Carbon and part of oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon and sulphur bearing compounds. Trace volumes of phosphorus, calcium and copper bearing compounds were detected during elemental analysis.

ABUNDANCE OF COMPOUNDS

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6703-F3 Date Sampled: 2021/03/24 13:01

Particle Size Statistics

Size in Micrometers		
Mean	4.150	
Median	2.065	
Maximum	92.582	
Quartile 3	4.730	
Quartile 1	0.734	
Minimum	0.050	
Standard Deviation	7.193	
Mode	0.334	
Sample Variance	51.732	
Kurtosis	62.658	
Skewness	6.467	
Range	92.532	
Standard Error	0.322	
Confidence Level (95%)	0.632	
Sum	2074.790	
Count	500	

Histogram Statistics

Microns	Frequency	Cumulative
0.03	0	0.00%
0.06	4	0.80%
0.13	10	2.80%
0.25	27	8.20%
0.50	52	18.60%
1.00	66	31.80%
2.00	85	48.80%
4.00	107	70.20%
8.00	83	86.80%
16.00	47	96.20%
32.00	14	99.00%
64.00	3	99.60%
128.00	2	100.00%
More	0	100.00%

92.582	2.396	0.522	1.273	1.595	8.896	0.071	2.490	1.023	0.383
31.951	1.290	1.000	0.862	1.523	5.416	0.054	4.885	1.343	0.644
25.841	3.803	0.971	1.154	0.812	3.852	0.130	1.994	0.824	0.264
22.286	2.962	0.560	0.560	0.713	2.953	0.165	1.981	0.493	0.740
71.145	1.874	0.250	1.361	2.100	1.934	0.259	4.495	0.229	0.592
14.647	2.818	0.408	0.786	0.510	2.275	0.279	1.372	0.563	0.361
16.243	3.581	0.823	0.506	1.038	1.538	0.306	1.854	0.589	0.266
14.999	1.726	0.335	34.359	0.200	2.077	0.142	1.345	31.434	0.338
15.992	2.001	0.289	19.217	0.307	1.572	0.177	1.386	15.869	0.236
10.400	1.360	0.221	12.795	0.591	1.434	0.085	2.165	18.941	0.485
11.025	1.540	0.149	12.842	1.240	1.317	0.085	0.671	17.296	0.297
10.710	0.541	0.070	7.890	0.401	2.007	0.191	0.973	13.238	0.139
6.007	0.814	0.071	7.283	0.316	1.918	0.227	0.985	9.420	0.314
5.750	3.575	0.143	9.579	0.867	2.114	23.740	0.772	13.114	0.334
8.647	2.824	0.108	11.668	0.203	1.297	18.529	0.457	8.319	0.133
9.498	3.624	0.367	8.041	0.448	1.049	12.858	0.297	9.604	0.151
8.690	2.384	0.221	4.673	1.104	0.708	18.422	0.608	5.482	0.301
8.899	1.680	0.080	6.577	0.435	1.009	9.496	0.326	10.155	0.430
8.647	2.082	0.130	6.506	0.224	0.885	14.015	0.209	4.045	0.211
9.718	3,897	0.058	6.648	9.853	0.932	7.211	0.700	10.481	21,982
7.097	2,599	0.060	7,654	8.602	0.874	4.294	0.475	6.438	22,006
10 940	1 980	0.000	3 206	9 187	0.550	4 561	0.557	7 398	22.000
7 284	2 032	0.050	2 707	7 326	0.550	2 222	0.337	8 814	14 895
7.204 4.247	2.052	0.092	2.707	5 357	0.634	2 953	0.305	12 997	11 724
5 4 5 9	0.874	0.052	2.603	5 761	0.300	2.333	0.233	3 561	10 465
5 496	1 739	8 765	2.000	2 474	0.664	5 221	12 493	2 400	11 149
3.450	1 444	6 244	2.354	1 902	0.004	8 432	6 241	2.400	11 332
6 911	1 883	6 3 3 7	5 257	1 924	0.405	5 071	3 984	5 5 2 3	8 382
6 5 9 6	2 028	7 536	2 721	2 353	0.531	1 794	4 560	3 601	7 864
1 321	2.020	2 852	2.721	2.555	0.303	2 5 5 3	4.500 /1 171	3 130	7.601
6 202	1 1/15	2.052	2.550	1 706	0.211	1 036	4.171	2 2 2 5	6.462
1 990	0 076	2.455 1 021	2.241	1.700	0.207	2 654	4.334 2.354	2.333	5 831
31 701	0.570	7 3 8 7	2 981	1.271	3 604	2.0J4 1.613	2.554	2.025	7 / 22
1/ 107	0.740	2.302	0.485	2 /10	1 917	5 2 2 2	2.055	2.031	7.433
7 702	0.750	4.042 5 517	1 920	1 2 2 7	0.667	2.000 2.475	1 210	2.004	6 607
6.019	1 620	1 070	2 700	1.307	0.007	2.475	2 052	3.324 3.377	0.007 E 016
1 052	1.035	2.575	1 75/	1 900	0.547	2.045	2.055	2.377	2 602
4.95Z	0.777	2.010	2 405	1.609	0.555	1.047	4.400	2 706	10 500
7.363	0.141	2 705	2.403	1.020	0.302	4.114	1.229	2 755	10.300 E 770
6 1 5 2	0.541	1 001	1 962	0.954	0.373	2.912	2 567	2.733	2 0/17
0.135 E 242	0.747	2 112	4.005	0.052	0.000	2.303	2.307	2.000	5.047
J.Z4Z	0.200	3.113	4.045	0.900	0.374	1.402	2.420	2.750	5.471
4.729	0.410	4.500	2.007	1.059	0.279	2.559	5.029 1.00E	2.900	2 400
4.340	0.805	1 076	1 600	1.050	0.104	2.299	1.905	0.621	1 0 2 6
4.752	1.022	1.970	1.009	0.450	0.500	2.400	1.744	1.070	1.000
4.990	4.181	3.307	1.439	1.193	0.275	8.545 7.705	1.054	1.070	1.500
3./50	3.UDX	2./30	1.2Uð	1.154	0.427	7.705 E 001	1.790		2.081
3.897	1.392	1.004	0.974	1.070	0.132	2.081 5.065	1.270	0.958	2.230
2.599	1.393	1.912	1.400	0.005	0.489	5.805	0.89/	0.908	3.890
2.804	0.891	2.593	1.595	0.358	0.453	4.400	0.334	0.334	4.032
Z.344	0.850	1.395	1.012	0.269	U.122	3.460	1.084	0.605	4.401

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6704-F4 Date Sampled: 2021/03/24 13:30

GR-004: ZN6704-F4 (2021/03/24 13:30)

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-004 consists of aggregates of angular, subangular, subrounded and elongated (rod like), clay size to medium sand size particles. The upper left photograph illustrates the bulk sample on filter paper.

Carbon (C) and oxygen (O) dominate the elemental spectrograph, respectively forming about 29.9% and 52.6% of the sample. Aluminum (Al), silicon (Si) and sulphur (S) are moderately abundant, respectively forming about 2.3%, 6.7% and 5.4% of the sample. Trace to minor amounts of sodium (Na), magnesium (Mg), phosphorus (P), chlorine (Cl), potassium (K), calcium (Ca), titanium (Ti), iron (Fe) and copper (Cu) are present.

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds with minor amounts of crystalline compounds present or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of about 100% silicates (illite [(K,H₃O)Al₂Si₃AlO₁₀(OH)₂], clinochlore [(Mg,Fe,Al)₆(Si,Al)₄O₁₀(OH)₂], kaolinite [Al₂Si₂O₅(OH)₄], albite [NaAlSi₃O₈], quartz [SiO₂] and microcline [KAlSi₃O₈]).

Carbon and some of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, oxygen and sulphur bearing compounds. Trace volumes of phosphorus, chlorine, calcium, titanium and copper bearing compounds were detected during elemental analysis.

The particle size distribution histogram shows a skewed unimodal distribution centering around 4.00 microns. Mean particle size was measured at 7.86 microns and median particle size was measured at 2.61 microns. Particles vary in size from 0.03 microns (clay size) to 274.26 microns (medium sand size). The Quartile 3 size is 8.01 microns and the Quartile 1 size is 0.86 microns. Standard deviation was measured at 19.69 microns.

TABLE 4: EDS and XRD Results

Bureau Veritas Laboratories; Project #: C119656; Sample ID: ZN6704-F4; Date Sampled: 2021/03/24 13:30 GR 33445-04 2021

ELEMENTS:

DOMINANT: C, O COMMON: MODERATE: AI, Si, S MINOR-TRACE: Na, Mg, P, CI, K, Ca, Ti, Fe, Cu

COMPOUNDS:

Formula	Name	Percentage	
(K,H ₃ O)Al ₂ Si ₃ AlO ₁₀ (OH) ₂	Illite	24.1%	
(Mg,Fe,Al) ₆ (Si,Al) ₄ O ₁₀ (OH) ₂	Clinochlore	22.3%	
Al ₂ Si ₂ O ₅ (OH) ₄	Kaolinite	18.3%	
NaAlSi ₃ O ₈	Albite	15.7%	
SiO ₂	Quartz	14.7%	
KAISi ₃ O ₈	Microcline	4.9%	
		100.0%	

COMMENTS:

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds with minor amounts of crystalline compounds present or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of about 100% silicates.

Carbon and some of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, oxygen and sulphur bearing compounds. Trace volumes of phosphorus, chlorine, calcium, titanium and copper bearing compounds were detected during elemental analysis.

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6704-F4 Date Sampled: 2021/03/24 13:30

Particle Size Statistics

Size in Micrometers				
Mean	7.856			
Median	2.613			
Maximum	274.255			
Quartile 3	8.012			
Quartile 1	0.863			
Minimum	0.025			
Standard Deviation	19.690			
Mode	0.284			
Sample Variance	387.713			
Kurtosis	116.769			
Skewness	9.560			
Range	274.230			
Standard Error	0.881			
Confidence Level (95%)	1.730			
Sum	3927.956			
Count	500			

Microns	Frequency	Cumulative
0.02	0	0.00%
0.03	2	0.40%
0.06	6	1.60%
0.13	21	5.80%
0.25	21	10.00%
0.50	32	16.40%
1.00	59	28.20%
2.00	79	44.00%
4.00	83	60.60%
8.00	72	75.00%
16.00	60	87.00%
32.00	44	95.80%
64.00	17	99.20%
128.00	2	99.60%
256.00	1	99.80%
512.00	1	100.00%
More	0	100.00%

17.207	2.089	35.399	0.491	46.174	0.816	15.685	2.119	253.471	6.310
9.728	1.579	16.941	2.359	43.422	0.905	4.238	1.834	41.712	4.423
6.766	1.451	6.126	1.107	23.022	1.347	1.576	1.340	37.438	6.897
7.236	1.603	7.524	1.687	24.878	0.588	3.420	1.015	33.915	7.080
5.436	1.259	3.642	0.427	26.102	0.621	1.023	2.839	26.840	1.953
5.252	1.710	3.296	0.305	21.190	0.512	2.734	3.003	13.319	2.658
4.941	4.365	5.316	0.350	23.259	0.284	1.498	3.113	10.146	7.198
4.338	3.169	1.844	0.605	19.506	0.781	1.579	1.476	9.271	7.045
3.670	2.191	1.700	0.696	24.003	0.241	0.960	1.468	7.735	4.451
2.594	0.996	2.266	0.426	14.369	0.181	0.995	0.629	11.205	6.083
3.491	1.601	2.826	0.305	13.724	0.557	0.717	0.889	11.658	4.430
1.934	2.482	2.266	0.760	17.055	0.320	0.507	1.947	10.842	3.889
2.108	1.092	2.052	0.596	13.298	0.256	0.227	1.229	9.035	5.942
1.635	1.601	2.302	0.779	25.223	0.488	0.167	0.926	15.215	4.507
1.871	1.358	1.521	0.822	18.322	0.240	0.967	1.820	8.305	2.704
2.000	1.662	0.985	0.526	16.639	0.330	0.604	3.829	9.328	2.704
2.805	1.914	0.808	0.414	7.725	0.443	0.174	1.374	4.607	2.250
1.488	31.254	1.098	104.802	8.616	41.655	0.291	3.528	8.172	4.231
1.044	19.003	1.201	104.565	9.202	9.385	0.317	3.390	16.586	5.375
4.127	19.375	3.337	39.061	6.325	15.977	0.167	3.199	10.633	1.591
2.941	20.847	2.108	47.376	7.335	6.299	0.486	2.371	10.049	0.960
0.508	15.646	2.191	49.035	13.161	4.616	0.288	2.299	6.389	0.739
1.110	17.000	2.483	44,791	9.434	2.094	0.107	0.945	3.452	0.301
1.064	16.011	0.602	38.326	5.200	3.484	0.134	0.689	3.258	0.481
1.468	14.560	0.707	28.944	5.692	5.153	0.120	1.041	2.983	0.476
0.740	9,434	0.820	33,340	6.841	3,453	0.101	1.212	4.580	0.171
0.936	10 511	0.971	31 241	3 298	3 151	0.097	0.868	8 4 3 7	0 108
0.703	13,153	0.550	35.201	1.844	3,954	0.284	0.440	6.881	0.175
0.749	18,160	0.721	23.142	1.442	3,260	0.271	0.440	10.633	0.098
1 108	18 530	2 413	25 725	1 562	2 818	0.271	0 361	13 087	0 102
1 227	9 297	1 100	22.723	2 720	1 828	0.969	0.301	11 332	0.102
0.980	14,224	0.791	12,649	2.126	1.043	0.664	0.094	7.959	0.042
0.775	13 917	1 868	24 037	2 236	2 157	0 335	0.097	8 408	0.255
1 709	14 751	0.849	10 750	4 940	0 777	0.333	0.052	5 436	0.235
7 4 5 6	11 007	6 5 2 2	14 000	10 174	1 281	41 386	0.731	274 255	0.145
6 1 1 0	10 720	4 078	16 879	3 3 3 9	2 185	25 425	0.114	31 429	0.082
7 498	9 849	4 463	22 361	2 1 3 9	1 209	16 755	0 599	28 001	0.060
5 381	6 603	3 552	9 911	1 897	1 211	10.755	0.335	42 960	0.000
4 906	3 256	3 045	12 526	1 852	3 160	7 914	0.106	29 026	0.110
3 688	4 604	3 877	14 981	1 757	1 712	7 335	0.064	42 362	0.025
3 265	8 955	4 087	6 289	2 609	0.825	6 2 2 0	0.001	24 755	0.029
2 2 2 2 2	7 800	2 985	16.055	1 /193	1 853	3 819	0.132	24.755	0.025
2.552	7 280	1 868	10.055	1 726	0.825	5 1 2 3	0.001	29.330	0.042
2 5 3 0	5.016	2 207	12 166	2 036	0.025	6.024	0.204	20.020	0.001
2.330	9.010	2.207	9 5/15	1 531	0.612	1 338	0.070	17 101	0.007
1 052	5.704	7 UDD	0 / 72	1 250	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.330 5 2 2 7	0.143	12.191 21 260	0.041
1.222	6 222	4.000 1 በንହ	9.420 10 697	1 076	5.505 1 775	2 201	0.005	21.200 10 007	0.303
1 /1Q1	2 100	1 051	10.007 6 566	1 5/7	1 252	1 205	0.145	11 560	0.043
1.401 2.617	3.400 2.621	1.001	0.500 8 716	1.547	1.220	4.555	0.203	11 619	0.400
2.017	2,001	1 10E	6 200	1 620	0.300	7.240	0.304 0 101	16 500	0.130
2.320	J.ZJI	T.TO2	0.209	1.020	0.709	2.097	0.101	T0.202	0.092

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6705-F5 Date Sampled: 2021/03/24 14:02

GR-005: ZN6705-F5 (2021/03/24 14:02)

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-005 consists of aggregates of angular, subangular, subrounded and elongated, clay size to very fine sand size particles. The upper left photograph illustrates the bulk sample on filter paper.

Carbon (C) and oxygen (O) dominate the elemental spectrograph, respectively forming about 42.4% and 41.2% of the sample. Sulphur (S) is common, forming about 12.8% of the sample. Trace to minor amounts of sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), phosphorus (P), potassium (K), calcium (Ca), iron (Fe) and copper (Cu) are present.

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of trace amounts of silicates (kaolinite [Al₂Si₂O₅(OH)₄], illite [(K,H₃O)Al₂Si₃AlO₁₀(OH)₂], clinochlore [(Mg,Fe,Al)₆(Si,Al)₄O₁₀(OH)₂], quartz [SiO₂], albite [NaAlSi₃O₈], microcline [KAlSi₃O₈] and silicon oxide [SiO₂]).

Carbon and some of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, oxygen and sulphur bearing compounds. Trace volumes of phosphorus, calcium and copper bearing compounds were detected during elemental analysis.

The particle size distribution histogram shows a skewed unimodal distribution centering around 4.00 microns. Mean particle size was measured at 2.93 microns and median particle size was measured at 1.14 microns. Particles vary in size from 0.02 microns (clay size) to 90.53 microns (very fine sand size). The Quartile 3 size is 3.03 microns and the Quartile 1 size is 0.36 microns. Standard deviation was measured at 6.35 microns.

TABLE 5: EDS and XRD Results

Bureau Veritas Laboratories; Project #: C119656; Sample ID: ZN6705-F5; Date Sampled: 2021/03/24 14:02 GR 33445-05 2021

ELEMENTS:

DOMINANT: C, O COMMON: S MODERATE: MINOR-TRACE: Na, Mg, Al, Si, P, K, Ca, Fe, Cu

COMPOUNDS:

Formula	Name	Percentage
Al ₂ Si ₂ O ₅ (OH) ₄	Kaolinite	trace
(K,H ₃ O)Al ₂ Si ₃ AlO ₁₀ (OH) ₂	Illite	trace
(Mg,Fe,Al) ₆ (Si,Al) ₄ O ₁₀ (OH) ₂	Clinochlore	trace
SiO ₂	Quartz	trace
NaAlSi ₃ O ₈	Albite	trace
KAISi ₃ O ₈	Microcline	trace
SiO ₂	Silicon Oxide	trace

COMMENTS:

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of trace amounts of silicates.

Carbon and part of oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, oxygen and sulphur bearing compounds. Trace volumes of phosphorus, calcium and copper bearing compounds were detected during elemental analysis.

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6705-F5 Date Sampled: 2021/03/24 14:02

Particle Size Statistics

Size in Micrometers				
Mean	2.929			
Median	1.138			
Maximum	90.529			
Quartile 3	3.030			
Quartile 1	0.358			
Minimum	0.024			
Standard Deviation	6.355			
Mode	0.134			
Sample Variance	40.386			
Kurtosis	92.570			
Skewness	8.112			
Range	90.505			
Standard Error	0.284			
Confidence Level (95%)	0.558			
Sum	1464.387			
Count	500			

Microns	Frequency	Cumulative
0.02	0	0.00%
0.03	2	0.40%
0.06	13	3.00%
0.13	28	8.60%
0.25	53	19.20%
0.50	63	31.80%
1.00	79	47.60%
2.00	81	63.80%
4.00	86	81.00%
8.00	54	91.80%
16.00	30	97.80%
32.00	7	99.20%
64.00	2	99.60%
128.00	2	100.00%
More	0	100.00%

9.109	0.099	90.529	1.834	3.691	0.877	4.842	0.450	8.072	1.123
5.190	0.241	13.412	0.632	3.012	0.450	1.676	0.378	4.526	1.308
4.443	0.219	14.912	0.343	1.787	0.661	2.186	0.270	7.522	2.184
4.779	0.055	7.546	0.103	3.177	0.340	1.252	0.275	4.271	1.523
4.561	0.195	8.799	1.317	1.827	0.509	1.196	0.493	6.681	2.668
3.040	0.588	9.613	0.371	2.911	0.571	0.959	0.356	2.600	4.382
2.565	0.124	15.651	0.555	1.468	0.050	0.508	1.018	3.960	4.631
4.305	0.069	7.670	0.994	1.688	0.133	2.619	0.703	2.379	1.798
3.543	0.346	1.600	0.291	0.913	0.183	3.039	0.419	2.160	0.708
3.077	0.090	7.351	0.154	0.877	0.186	0.793	0.345	2.748	0.761
2.640	0.127	6.368	0.259	1.217	0.151	0.578	1.663	3.759	1.624
4.470	0.321	5.787	0.246	0.766	0.134	0.469	0.050	1.897	0.640
2.213	0.185	4.429	0.808	0.783	0.033	0.701	0.476	2.256	0.878
3.027	1.028	4.242	0.287	0.666	0.211	0.715	0.472	0.848	0.280
2.499	0.467	4.642	0.333	0.694	1.577	0.454	0.471	1.321	0.165
3.451	0.284	9.418	0.314	0.659	0.425	0.134	0.690	1.895	0.243
2.430	0.246	6.253	0.229	0.614	0.217	0.180	0.253	0.482	1.336
2.824	15.810	3.365	65.208	0.440	9.130	0.184	4.900	0.841	2.128
1.950	16.105	3.993	34.238	0.350	6.884	0.067	3.349	0.777	1.692
2.813	12.971	4.954	33.373	0.768	4.838	0.141	2.614	0.809	2.523
1.443	5.923	2.055	29.006	0.211	2.393	0.094	2.670	1.836	1.455
1.746	8.682	3.830	18.810	0.472	1.003	0.201	2.215	1.544	0.701
1.256	8.480	1.315	18.630	0.198	2.192	0.235	2.006	1.093	1.327
0.962	8.621	5.484	16.086	0.278	1.853	0.368	1.102	1.138	0.488
1.127	6.300	2.344	17.464	0.208	2.044	0.195	0.869	1.330	0.740
2.105	7.069	1.474	10.526	0.085	1.762	0.633	1.221	1.154	0.654
1.504	4.043	0.706	15.201	0.196	2.326	0.379	0.788	1.321	0.469
1.166	4.771	2.948	14.931	0.140	1.378	0.253	0.695	0.963	0.264
0.988	4.391	1.529	7.790	0.110	0.707	0.226	0.424	1.028	0.194
0.495	3.477	1.267	6.621	0.124	0.628	0.107	0.805	0.691	0.119
0.600	3.067	2.631	11.650	0.190	0.328	0.201	0.311	0.165	0.055
0.747	2.268	1.341	5.016	0.168	0.636	0.294	0.134	0.200	0.609
0.595	1.811	0.970	9.610	0.157	1.039	0.111	0.487	0.322	0.359
1.727	2.448	0.333	3.499	0.082	0.925	0.168	0.428	0.253	0.107
5.788	3.413	22.608	8.490	5.669	0.442	13.644	1.623	14.959	0.406
4.970	3.556	13.908	9.091	4.458	0.365	2.722	0.730	10.996	0.070
7.724	1.606	11.781	15.689	3.117	0.322	4.929	0.542	5.795	0.042
2.242	3.688	5.290	8.161	1.794	0.429	2.988	0.333	9.958	0.116
3.260	3.887	3.757	6.957	2.504	0.534	3.575	0.074	7.113	0.109
1.439	1.771	3.535	4.176	2.697	0.569	2.213	0.216	5.581	0.094
1.460	1.000	6.692	6.403	1.455	0.134	1.857	0.112	3,897	0.040
3 188	0 471	0.902	6 174	1 1 3 3	0 531	2 302	0 1 2 9	2 401	0.034
1 414	0.447	2 2 5 9	3 800	0.881	0.331	1 673	0.059	2 3 19	0.051
1 601	0.533	2.235	2 720	0.001	0.192	2.060	0.035	1 243	0.027
0.990	0.555	2.344	1 897	1 429	0.455	0.902	0.047	1 800	0.027
1 298	0.700	2.375	5.9/6	0.969	0.120	0.502	0.100	3 805	0.042
0.651	2 2/1	2.207 1 510	1 811	0.202	0.105	1 28/	0.100	2.005 1 591	0.043
0.001	1 606	1 270	8 000	0.232	0.310	1 1 2 5	0.247	7.JJI 2 //Q	0.002
0.205	2.000 2 / Q1	0.686	2 861	0.040	0 112	0 512	0.055	1 665	0.024
0.104	2.701	0.000	2.00-	0.005	0 100	0.512	9 729	1 1 2 8	0.100
5.655	2.770	0.020	2.001	0.104	0.100	0.020	5.725	T.T.00	0.100

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6706-F6 Date Sampled: 2021/03/24 15:43

GR-006: ZN6706-F6 (2021/03/24 15:43)

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-006 consists of aggregates of angular, subangular and subrounded, clay size to medium silt size particles. The upper left photograph illustrates the bulk sample on filter paper.

Carbon (C) and oxygen (O) dominate the elemental spectrograph, respectively forming about 50.4% and 33.1% of the sample. Sulphur (S) is common, forming about 16.2% of the sample. Trace to minor amounts of chlorine (Cl) and copper (Cu) are present.

The sample generated a non-crystalline diffractogram indicating the sample is either composed of non-crystalline compounds or there is insufficient sample on the filter paper.

Carbon and oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, oxygen and sulphur bearing compounds. Trace volumes of chlorine and copper bearing compounds were detected during elemental analysis.

The particle size distribution histogram shows a bimodal distribution centering around 0.25 microns and 32.00 microns. Mean particle size was measured at 0.86 microns and median particle size was measured at 0.28 microns. Particles vary in size from 0.01 microns (clay size) to 27.85 microns (medium silt size). The Quartile 3 size is 0.71 microns and the Quartile 1 size is 0.13 microns. Standard deviation was measured at 2.49 microns.

TABLE 6: EDS and XRD Results

Bureau Veritas Laboratories; Project #: C119656; Sample ID: ZN6706-F6; Date Sampled: 2021/03/24 15:43 GR 33445-06 2021

ELEMENTS:

DOMINANT: C, O

COMMON: S

MODERATE: MINOR-TRACE: ^{CI, Cu}

COMMENTS:

The sample generated a non-crystalline diffractogram indicating the sample is either composed of non-crystalline compounds or there is insufficient sample or there is insufficient sample on the filter paper.

Carbon and oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, oxygen and sulphur bearing compounds. Trace volumes of chlorine and copper bearing compounds were detected during elemental analysis.

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6706-F6 Date Sampled: 2021/03/24 15:43

Particle Size Statistics

Size in Micrometers				
Mean	0.863			
Median	0.278			
Maximum	27.852			
Quartile 3	0.711			
Quartile 1	0.125			
Minimum	0.010			
Standard Deviation	2.490			
Mode	0.141			
Sample Variance	6.200			
Kurtosis	63.186			
Skewness	7.459			
Range	27.842			
Standard Error	0.111			
Confidence Level (95%)	0.219			
Sum	431.714			
Count	500			

Microns	Frequency	Cumulative
0.01	0	0.00%
0.02	5	1.00%
0.03	13	3.60%
0.06	44	12.40%
0.13	64	25.20%
0.25	107	46.60%
0.50	102	67.00%
1.00	83	83.60%
2.00	46	92.80%
4.00	19	96.60%
8.00	10	98.60%
16.00	1	98.80%
32.00	6	100.00%
More	0	100.00%

22.328	0.213	0.876	0.375	0.085	0.241	0.152	0.302	0.157	0.051
6.921	0.373	0.609	0.214	0.113	0.501	20.181	0.467	0.080	0.101
2.755	0.260	0.564	0.255	0.044	0.474	4.177	0.179	0.157	0.046
2.193	0.283	1.226	0.125	0.027	0.100	1.904	0.133	0.245	0.066
1.903	0.307	0.849	0.214	0.044	0.181	0.583	0.099	0.142	0.032
3.414	0.348	0.973	0.583	0.032	0.126	1.761	0.133	0.044	0.040
0.969	0.275	1.152	0.682	0.147	0.209	1.887	0.179	0.089	0.050
0.314	0.623	2.380	0.498	0.085	0.305	1.253	0.141	0.067	0.051
2.983	0.330	1.259	0.236	0.023	0.060	0.194	0.220	2.245	0.199
1.302	0.298	1.025	0.447	0.042	0.321	0.117	0.070	2.223	0.164
1.012	0.401	0.980	0.292	16.539	0.742	0.058	0.067	1.000	0.070
0.823	0.867	0.950	0.447	4.937	0.439	0.036	0.089	6.910	0.080
0.550	0.133	0.608	0.475	2.314	0.484	0.019	0.400	2.828	0.449
1.187	2.829	0.450	0.112	2.985	0.349	0.033	0.835	1.126	27.852
1.034	1.454	0.100	0.135	1.476	0.534	0.081	0.094	0.542	6.368
0.728	0.445	0.182	0.255	1.687	0.215	0.121	0.223	0.483	3.614
1.757	0.457	0.326	0.177	1.573	0.241	0.045	0.099	0.746	4.577
1.601	0.076	0.426	0.526	1.640	0.165	0.047	0.160	0.507	4.177
0.543	0.127	0.546	0.135	1.649	0.189	0.092	0.156	0.353	3.458
0.801	0.055	0.358	0.261	1.207	0.128	0.049	0.126	0.182	2.345
1.157	0.045	0.474	0.127	1.193	0.735	0.029	0.205	0.260	1.274
0.943	0.082	0.625	0.576	0.894	0.580	0.043	0.111	0.379	0.777
0.343	0.086	0.160	0.075	0.926	0.328	0.105	0.178	0.403	0.508
0.433	0.072	0.158	0.100	1.224	0.117	0.054	0.162	0.495	0.709
0.285	0.076	0.650	1.261	1.135	0.108	0.018	0.205	0.774	1.315
0.141	0.028	0.150	0.780	0.533	0.144	0.023	0.851	0.372	0.537
0.067	0.092	0.334	0.347	0.780	0.089	0.051	1.240	0.226	1.104
0.243	0.177	1.532	0.227	0.427	0.141	0.041	0.820	0.149	0.680
0.236	0.326	0.806	0.229	0.406	0.216	0.042	0.232	0.180	0.721
1.269	0.045	0.225	0.231	0.359	0.206	0.052	0.396	0.100	3.133
1.181	0.066	0.403	0.060	0.359	0.152	0.050	0.205	0.041	2.801
0.302	0.172	0.549	0.141	0.718	5.687	0.058	0.199	0.106	0.869
17.869	0.147	0.372	0.298	0.333	1.526	0.036	0.788	0.175	1.373
0.801	0.027	0.625	0.074	0.657	1.057	0.037	0.299	0.162	1.645
0.167	0.025	0.251	0.040	0.240	0.906	0.014	0.245	0.190	1.298
0.211	0.132	0.195	0.263	0.189	0.292	0.057	0.160	0.184	0.765
0.267	0.057	0.141	0.238	0.422	0.596	0.011	0.382	0.202	0.483
0.354	0.091	0.833	0.062	0.275	0.791	0.010	0.133	0.092	0.539
0.335	0.159	0.180	0.060	0.721	0.777	0.014	0.259	0.063	0.440
0.418	0.028	0.376	0.040	0.667	0.513	0.017	0.475	0.080	0.260
0.390	0.305	0.601	0.083	0.471	0.548	0.069	0.141	3.822	1.443
0.213	0.065	0.215	0.028	0.537	0.090	0.015	0.135	1.468	0.508
0.471	0.121	0.275	0.052	3.460	0.276	0.064	0.070	0.987	0.740
0.269	0.082	0.125	0.027	1.843	0.375	8.235	0.070	0.386	0.345
0.807	0.129	0.354	0.035	2.807	0.237	1.734	0.070	0.432	0.487
0.424	0.096	0.483	0.729	1.135	0.720	0.696	0.120	0.452	0.294
0.211	0.079	0.146	0.199	0.534	0.180	0.673	0.126	0.155	0.483
0.233	22.510	0.075	0.086	0.753	0.280	5.459	0.179	0.065	0.276
0.260	4.869	0.750	0.040	0.449	0.202	0.358	0.236	0.152	0.522
0.438	1.546	0.152	0.050	0.566	0.035	0.299	0.111	0.233	0.184

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6707-F7 Date Sampled: 2021/03/25 10:50

GR-007: ZN6707-F7 (2021/03/25 10:50)

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-007 consists of aggregates of angular, subangular and subrounded, clay size to very fine sand size particles. The upper left photograph illustrates the bulk sample on filter paper.

Carbon (C) and oxygen (O) dominate the elemental spectrograph, respectively forming about 70.3% and 25.1% of the sample. Aluminum (Al) is moderately abundant, forming about 2.4% of the sample. Trace to minor amounts of magnesium (Mg), silicon (Si), sulphur (S), chlorine (Cl), calcium (Ca), chromium (Cr), iron (Fe), nickel (Ni) and copper (Cu) are present.

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of trace amounts of silicates (**quartz [SiO**₂]).

Carbon and some of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, oxygen and aluminum bearing compounds. Trace volumes of magnesium, sulphur, chlorine, calcium, chromium, iron, nickel and copper bearing compounds were detected during elemental analysis.

The particle size distribution histogram shows a unimodal distribution centering around 1.00 microns. Mean particle size was measured at 2.11 microns and median particle size was measured at 0.71 microns. Particles vary in size from 0.03 microns (clay size) to 62.54 microns (very fine sand size). The Quartile 3 size is 2.11 microns and the Quartile 1 size is 0.29 microns. Standard deviation was measured at 4.50 microns.

TABLE 7: EDS and XRD Results

Bureau Veritas Laboratories; Project #: C119656; Sample ID: ZN6707-F7; Date Sampled: 2021/03/25 10:50 GR 33445-07 2021

ELEMENTS:

DOMINANT: COMMON:	DOMINANT: C, O COMMON:		MODERATE: AI MINOR-TRACE: Mg, Si, S, Cl, Ca, Cr, Fe		
COMPOUNDS:		, ee			
Formula	Name	Percentage			
SiO ₂	Quartz	trace			

COMMENTS:

The sample generated a poor quality diffractogram indicating the sample is either mainly composed of non-crystalline compounds or there is insufficient sample on the filter paper. X-ray diffraction analysis shows the crystalline components of the sample consist of trace amounts of silicates.

Carbon and some of the oxygen in the elemental analysis represent the filter paper. Elemental analysis also suggests the presence of non-crystalline carbon, oxygen and aluminum bearing compounds. Trace volumes of magnesium, sulphur, chlorine, calcium, chromium, iron, nickel and copper bearing compounds were detected during elemental analysis.

Bureau Veritas Laboratories; Project #: C119656 Sample ID: ZN6707-F7 Date Sampled: 2021/03/25 10:50

Particle Size Statistics

Size in Micrometers				
Mean	2.107			
Median	0.709			
Maximum	62.542			
Quartile 3	2.113			
Quartile 1	0.292			
Minimum	0.027			
Standard Deviation	4.500			
Mode	0.040			
Sample Variance	20.252			
Kurtosis	78.296			
Skewness	7.344			
Range	62.515			
Standard Error	0.201			
Confidence Level (95%)	0.395			
Sum	1053.415			
Count	500			

Microns	Frequency	Cumulative
0.02	0	0.00%
0.03	2	0.40%
0.06	13	3.00%
0.13	33	9.60%
0.25	59	21.40%
0.50	78	37.00%
1.00	109	58.80%
2.00	75	73.80%
4.00	65	86.80%
8.00	35	93.80%
16.00	25	98.80%
32.00	4	99.60%
64.00	2	100.00%
More	0	100.00%

0.761	0.342	0.126	0.179	3.002	3.119	0.521	1.900	0.133	0.680
0.625	0.582	1.139	0.100	4.031	2.349	0.559	2.209	12.297	0.541
0.699	0.408	0.556	0.063	3.202	3.591	0.307	2.121	6.530	0.702
0.800	2.293	0.817	2.002	3.454	2.426	0.674	1.720	4.912	0.559
0.525	7.710	0.668	1.010	3.900	1.457	0.999	1.513	3.894	0.650
0.530	0.842	0.267	1.001	4.533	2.530	0.671	1.628	4.952	38.203
0.457	0.333	0.290	1.650	3.007	1.497	0.875	0.806	3.202	17.117
0.586	0.510	0.378	1.886	1.444	1.197	0.343	2.729	4.092	5.731
0.649	0.347	0.130	1.251	2.067	1.753	0.552	2.202	4.563	5.482
0.663	0.184	0.141	1.028	1.956	1.104	0.575	0.854	1.947	4.727
0.427	0.235	0.211	0.960	0.734	1.156	0.302	0.894	2.945	5.233
0.727	0.230	0.396	0.460	0.545	0.406	0.644	1.811	2.209	4.438
0.657	0.210	0.157	0.120	0.495	0.872	0.481	1.655	2.610	3.513
0.650	0.212	0.578	0.301	0.409	0.897	0.509	0.894	1.603	3.228
0.781	0.170	0.099	0.290	0.379	0.923	0.629	0.949	2.620	4.704
0.420	0.371	5.313	0.104	0.256	0.425	1.542	0.640	1.513	2.683
0.440	0.114	2.530	0.168	0.873	0.436	1.354	0.495	1.501	4.588
0.409	0.054	1.794	0.085	0.149	0.574	0.948	5.333	1.956	3.225
0.465	0.057	1.154	0.061	0.291	0.607	0.612	5.472	1.373	3.306
0.408	0.067	1.050	0.144	0.249	0.326	1.064	3.304	1.458	3.625
0.422	0.250	0.288	0.070	0.275	0.515	0.167	2.630	1.379	2.907
0.543	0.264	0.420	0.124	0.187	0.200	0.547	2.481	1.947	2.470
0.346	0.623	0.316	0.209	0.120	0.246	0.522	1.462	1.595	2.377
0.519	0.100	0.322	0.110	0.267	0.349	0.839	1.127	2.504	2.100
0.040	0.117	0.420	0.071	0.256	0.539	0.435	1.197	1.365	3.200
0.048	0.192	0.620	0.040	0.228	0.869	29.904	1.271	1.530	1.868
0.226	0.399	0.146	0.063	0.187	0.589	12.279	1.640	1.124	0.922
0.040	0.292	0.161	0.127	0.227	0.398	10.823	0.760	1.055	2.022
0.057	0.156	0.180	0.150	0.181	0.256	10.721	0.801	0.743	1.921
0.034	0.197	0.141	0.076	0.346	0.479	13.046	0.775	1.612	1.780
0.081	0.092	0.108	0.201	0.434	0.692	8.443	0.755	1.281	1.389
0.047	0.103	0.201	0.072	0.233	0.200	5.908	0.567	1.664	1.703
0.027	0.073	0.513	0.045	0.221	0.206	7.767	0.547	3.662	1.556
0.047	0.095	0.428	62.542	0.155	0.353	5.503	1.267	1.188	1.676
0.030	0.082	0.412	13.608	0.078	0.515	4.357	0.485	0.851	8.236
17.353	0.112	0.484	13.548	0.115	0.316	4.249	0.557	1.492	2.480
8.766	29.177	0.165	9.124	0.510	0.281	4.245	0.278	0.930	2.877
3.444	8.884	0.165	9.694	0.640	0.167	7.181	0.472	0.886	2.181
1.189	8.115	0.505	9.930	0.224	0.555	2.648	0.943	0.808	2.062
0.280	7.690	0.560	6.673	0.854	0.309	4.809	0.248	0.875	2.110
0.089	2.729	0.206	10.381	0.900	4.286	5.590	0.044	0.695	1.952
0.160	4.504	0.197	6.021	1.649	12.048	1.900	0.339	0.335	1.793
0.716	0.632	0.102	3.716	1.204	13.208	2.907	0.190	0.716	2.485
0.402	0.894	0.102	3.008	0.985	9,168	0.510	0.259	0.650	1.350
0.253	0.632	0.117	7,799	0.632	8.435	1.221	0.149	1.154	2.121
0.396	12,488	0.247	3.848	1.005	8.515	1.600	0.648	1.059	2.543
0.425	8.502	0.253	5.901	0.424	2.690	1.400	0.537	0.762	1.326
0.291	0.356	0.100	2.524	9.100	2.206	3.106	0.244	0.602	1.320
0.322	0.803	0.156	2.602	5,111	1.703	2.267	0.222	0.585	0.997
0.322	0.613	0.134	2.886	10.567	2.775	2.642	0.296	0.716	0.640

